AlN thin film was coated over Cu substrate (575 mm2) with 400 nm thickness using DC sputtering for thermal interface material (TIM) application. Aluminum Nitride (AlN)-coated Cu substrate (AlN/Cu) was used as a heat sink for 3-W green light emitting diode (LED). The thermal transient curve was recorded for given LED attached with bare Cu and AlN-coated Cu substrate at three different driving currents. LED attached on AlN/Cu showed the reduced raise in junction temperature (TJ) by 2.59 °C at 700 mA. The LED/TIM/AlN/Cu boundary condition was not supported to reduce the TJ. The total thermal resistance (Rth-tot) was reduced for AlN-coated Cu substrate at 350 mA. The thermal resistance between metal core printed circuit board and Cu substrate (Rth-b-hs) was also observed as low for AlN-coated Cu substrates compared with other boundary conditions measured at 700 mA. The observed results were supported for the use of AlN thin film as TIM in high power LEDs.

References

References
1.
de Sorgo
,
M.
,
1996
, “
Thermal Interface Materials
,”
Electron. Cool.
,
2
, pp.
12
15
.
2.
Petroski
,
J.
,
2002
, “
Thermal Challenges Facing New-Generation Light-Emitting Diodes (LEDs) for Lighting Applications
,”
SPIE Proc.
,
4776
, pp.
215
496
.10.1117/12.452579
3.
Huaiyu
,
Y.
,
Koh
,
S.
,
van Zeijl
,
H.
,
Gielen
,
A. W. J.
, and
Guoqi
Z.
,
2011
, “
A Review of Passive Thermal Management of LED Module
,”
J. Semicon.
,
32
(1), p.
014008
.10.1088/1674-4926/32/1/014008
4.
Slack
,
G. A.
,
1973
, “
Nonmetallic Crystals With High Thermal Conductivity
,”
J. Phys. Chem. Sol.
,
34
(2), pp.
321
335
.10.1016/0022-3697(73)90092-9
5.
Watari
,
K.
, and
Shinde
,
S. L.
,
2001
, “
High Thermal Conductivity Material
,”
MRS Bull.
,
26
(6), pp.
440
441
.10.1557/mrs2001.113
6.
Pan
,
T. S.
,
Zhang
,
Y.
,
Huang
,
J.
,
Zeng
,
B.
,
Hong
,
D. H.
,
Wang
,
S. L.
,
Zeng
,
H. Z.
,
Gao
,
M.
,
Huang
,
W.
, and
Lin
,
Y.
,
2012
, “
Enhanced Thermal Conductivity of Polycrystalline Aluminum Nitride Thin Films by Optimizing the Interface Structure
,”
J. Appl. Phys.
,
112
(4), p.
044905
.10.1063/1.4748048
7.
Schowalter
,
L. J.
,
Slack
,
G. A.
,
Whitlock
,
J. B.
,
Morgan
,
K.
,
Schujman
,
K.
,
Raghothamachar
,
B.
,
Dudley
M.
, and
Evans
,
K. R.
,
2003
, “
Fabrication of Native, Single-Crystal AlN Substrates
,”
21st Century COE Joint Workshop on Bulk Nitrides
, IPAP Conference Series 4, Tokyo, Japan, June 2–3, pp.
38
40
.
8.
Heo
,
K. R. H.
,
Kim
,
T.
,
Kim
,
K. J.
,
Nahm
,
S.
,
Yoon
,
Y. J.
, and
Kim
,
J.
,
2013
, “
Enhanced Heat Transfer by Room Temperature Deposition of AlN Film on Aluminum for a Light Emitting Diode Package
,”
Appl. Therm. Eng.
,
50
(1), pp.
799
804
.10.1016/j.applthermaleng.2012.07.024
9.
Lee
,
J. W.
,
Cuomo
,
J. J.
,
Cho
,
Y. S.
, and
Keusseyan
,
R. L.
,
2005
, “
Aluminum Nitride Thin Films on an LTCC Substrate
,”
J. Am. Ceram. Soc.
,
88
(7), pp.
1977
1980
.10.1111/j.1551-2916.2005.00250.x
10.
Kuo
,
P. K.
,
Auner
,
G. W.
, and
Wu
,
Z. L.
,
1994
, “
Microstructure and Thermal Conductivity of Epitaxial A1N Thin Films
,”
Thin Solid Films
,
253
(1–2), pp.
223
227
.10.1016/0040-6090(94)90324-7
11.
Zhao
,
Y.
,
Zhu
,
C.
,
Wang
,
S.
,
Tian
,
J. Z.
,
Yang
,
D. J.
,
Chen
,
C. K.
,
Cheng
,
H.
, and
Hing
,
P.
,
2004
, “
Pulsed Photothermal Reflectance Measurement of the Thermal Conductivity of Sputtered Aluminum Nitride Thin Films
,”
J. Appl. Phys.
,
96
(8), pp.
4563
4568
.10.1063/1.1785850
12.
Kim
,
L.
, and
Shin
,
M. W.
,
2006
, “
Thermal Resistance Measurement of LEDs With Multi-Chip Packages
,”
22nd IEEE Semiconductor Thermal Measurement and Management Symposium
, Dallas, TX, March 14–16, pp.
186
190
.10.1109/STHERM.2006.1625226
13.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(8), pp.
1571
1586
.10.1109/JPROC.2006.879796
You do not currently have access to this content.