To obtain better fluid mixing and higher heat transfer in the low Reynolds number regime, various wavy fins are employed in heat sinks (heat exchangers) for electronic cooling applications. However, it was reported in previous works that in the low Reynolds number regime there are no remarkable differences in the thermal performance of a straight-plate and a wavy-wall channel. In this study, the constructal theory is applied to optimize the geometry of wavy-wall channels of an electronic heat sink, where the objective is to minimize the global thermal resistance. The domain has three degrees of freedom: The interplate-spacing (S), the wavelength ratio (λ1/λ2), and the amplitude ratio (a1/a2). The two times minimized global thermal resistance indicates that the thermal–hydraulic performance of the wavy channels is unaffected by the amplitude ratio, while the wavelength ratio and interplate separation have strong impacts on the overall performance. In addition, the thermal performances at four Reynolds numbers are evaluated, and it is found that the constructal-wavy channels can exhibit much better thermal performance in the low Reynolds number regime.

References

References
1.
Wang
,
C. C.
, and
Liaw
,
J. S.
,
2012
, “
Air-Side Performance of Herringbone Wavy Fin-And-Tube Heat Exchangers Under Dehumidifying Condition—Data With Larger Diameter Tube
,”
Int. J. Heat and Mass Transfer
,
55
(11–12), pp.
3054
3060
.10.1016/j.ijheatmasstransfer.2012.02.025
2.
Xie
,
G. N.
,
Liu
,
J.
,
Liu
,
Y. Q.
,
Sunden
,
B.
, and
Zhang
,
W. H.
,
2013
, “
Comparative Study of Thermal Performance of Longitudinal and Transversal-Wavy Microchannel Heat Sinks for Electronic Cooling
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021008
.10.1115/1.4023530
3.
Tanda
,
G.
, and
Vittori
,
G.
,
1996
, “
Fluid Flow and Heat Transfer in a Two-Dimensional Wavy Channel
,”
Int. J. Heat Mass Transfer
,
31
(6), pp.
411
418
.10.1007/BF02172588
4.
Xie
,
G. N.
,
Liu
,
J.
,
Zhang
,
W. H.
, and
Sunden
,
B.
,
2012
, “
Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel Heat Sink for Chip Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041010
.10.1115/1.4023035
5.
Bejan
,
A.
,
Lorente
,
S.
, and
Lee
,
J.
,
2008
, “
Unifying Constructal Theory of Tree Roots, Canopies and Forests
,”
J. Theor. Biol.
,
254
(3), pp.
529
540
.10.1016/j.jtbi.2008.06.026
6.
Bejan
,
A.
,
2003
, “
Optimal Internal Structure of Volumes Cooled by Single-Phase Forced and Natural Convection
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
200
207
.10.1115/1.1566970
7.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2013
, “
Geometric Optimization of C-Shaped Cavities According to Bejan's Theory: General Review and Comparative Study
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
031007
.10.1115/1.4024113
8.
Lorenzini
,
G.
,
Biserni
,
C.
,
Isoldi
,
L. A.
,
Dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2011
, “
Constructal Design Applied to the Geometric Optimization of Y-Shaped Cavities Embedded in a Conducting Medium
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041008
.10.1115/1.4005296
9.
Reis
,
A. H.
, and
Bejan
,
A.
,
2006
, “
Constructal Theory of Global Circulation and Climate
,”
Int. J. Heat and Mass Transfer
,
49
(11–12), pp.
1857
1875
.10.1016/j.ijheatmasstransfer.2005.10.037
10.
Bejan
,
A.
, and
Lorenzini
,
G.
,
2011
, “
The Constructal Law and the Evolution of Design in Nature
,”
Phys. Life Rev.
,
8
(3), pp.
209
240
.10.1016/j.plrev.2011.05.010
11.
Bejan
,
A.
, and
Merkx
,
G. W.
,
2007
,
Constructal Theory of Social Dynamics
,
Springer
,
New York
.
12.
Bejan
,
A.
, and
Lorente
,
S.
,
2008
,
Design With Constructal Theory
,
Wiley
,
Hoboken, NJ
.
13.
Chen
,
L.
,
Xiao
,
Q.
,
Xie
,
Z.
, and
Sun
,
F.
,
2013
, “
Constructal Entransy Dissipation Rate Minimization for Tree-Shaped Assembly of Fins
,”
Int. J. Heat and Mass Transfer
,
67
, pp.
506
513
.10.1016/j.ijheatmasstransfer.2013.08.073
14.
Bello-Ochende
,
T.
,
Meyer
,
J. P.
, and
Bejan
,
A.
,
2010
, “
Constructal Multi-Scale Pin-Fins
,”
Int. J. Heat and Mass Transfer
,
53
(13–14), pp.
2773
2779
.10.1016/j.ijheatmasstransfer.2010.02.021
15.
Lorenzini
,
G.
, and
Rocha
,
L. A. O.
,
2009
, “
Constructal Design of T-Y Assembly of Fins for an Optimized Heat Removal
,”
Int. J. Heat and Mass Transfer
,
52
(5–6), pp.
1458
1463
.10.1016/j.ijheatmasstransfer.2008.09.007
16.
Adewumi
,
O. O.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2013
, “
Constructal Design of Combined Microchannel and Micro Pin Fins for Electronic Cooling
,”
Int. J. Heat and Mass Transfer
,
66
, pp.
315
323
.10.1016/j.ijheatmasstransfer.2013.07.039
17.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2009
, “
A Bejan's Constructal Theory Approach to the Overall Optimization of Heat Exchanging Finned Modules With Air in Forced Convection and Laminar Flow Condition
,”
ASME J. Heat Transfer
,
131
(
8
), p.
081801
.10.1115/1.3109996
18.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2013
, “
Numerical Performance Analysis of Constructal I and Y Finned Heat Exchanging Modules
,”
ASME J. Electron. Packag.
,
131
(
3
), p.
031012
.10.1115/1.3144152
19.
Salimpour
,
M. R.
,
Sharifhasan
,
M.
, and
Shirani
,
E.
,
2013
, “
Constructal Optimization of Microchannel Heat Sinks With Noncircular Cross Sections
,”
Heat Transfer Eng.
,
34
(10), pp.
863
874
.10.1080/01457632.2012.746552
20.
Xie
,
G. N.
,
Zhang
,
F. L.
,
Zhang
,
W. H.
, and
Sunden
,
B.
,
2014
, “
Constructal Design and Thermal Analysis of Microchannel Heat Sinks With Multistage Bifurcations in Single-Phase Liquid Flow
,”
Appl. Therm. Eng.
,
62
(2), pp.
791
802
.10.1016/j.applthermaleng.2013.10.042
21.
Kang
,
M. K.
,
Shin
,
J. H.
,
Lee
,
H. H.
, and
Chun
,
K.
,
2005
, “
Analysis of Laminar Convective Heat Transfer in Micro Heat Exchanger for Stacked Multi-Chip Module
,”
Microsyst. Technol.
,
11
(11), pp.
1176
1186
.10.1007/s00542-005-0590-9
22.
ANSYS, 2014, “Fluent Documentation,”
ANSYS Inc., Canonsburg, PA, http://www.ansys.com/Support/Documentation
23.
Rush
,
T. A.
,
Newell
,
T. A.
,
Jacobi
, and
A. M.
,
1999
, “
An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages
,”
Int. J. Heat Mass Transfer
,
42
(9), pp.
1541
1553
.10.1016/S0017-9310(98)00264-6
24.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Channels
,”
Int. J. Heat Mass Transfer
,
53
(13–14), pp.
2760
2772
.10.1016/j.ijheatmasstransfer.2010.02.022
25.
Zhang
,
J.
,
Kundu
,
J.
, and
Manglik
,
R. M.
,
2004
, “
Effect of Fin Waviness and Spacing on the Lateral Vortex Structure and Laminar Heat Transfer in Wavy-Plate-Fin Cores
,”
Int. J. Heat Mass Transfer
,
47
(8–9), pp.
1719
1730
.10.1016/j.ijheatmasstransfer.2003.10.006
26.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
,
2005
, “
Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
,
48
(8), pp.
1439
1449
.10.1016/j.ijheatmasstransfer.2004.10.022
27.
Aref
,
H.
,
1984
, “
Stirring by Chaotic Advection
,”
J. Fluid Mech.
,
143
, pp.
1
21
.10.1017/S0022112084001233
28.
Ottino
,
J. M.
,
1989
,
The Kinematic of Mixing: Stretching, Chaos and Transport
,
Cambridge University Press
,
New York
.
29.
Aref
,
H.
,
2002
, “
The Development of Chaotic Advection
,”
Phys. Fluids
,
14
(4), pp.
1315
1325
.10.1063/1.1458932
You do not currently have access to this content.