This paper reports theoretical and numerical analysis of fluid flow and heat transfer in a cascade electro-osmotic flow (EOF) micropump for chip cooling. A simple analytical model is developed to determine the temperature distribution in a two-dimensional (2D) single channel EOF micropump with forced convection due to a voltage difference between both ends. Numerical simulations are performed to determine the temperature distribution in the domain which is compared with that predicted by the model. A novel cascade EOF micropump with multiple microchannels in series and parallel and with an array of interdigitated electrodes along the flow direction is proposed. The simulations predict the maximum flow rate and pressure capability of one single stage of the micropump and the analytical model employs equivalent circuit theory to predict the total flow rate and back pressure. Each stage of the proposed micropump comprises sump and pump regions having opposing electric field directions. The various design parameters of the micropump includes the height of the pump and sump (h), number of stages (n), channel width (w), thickness of the channel wall or fin (r), and width ratio of the pump and sump (s:p) regions. Numerical simulations are performed to predict the effects of these design parameters on the pump performance which is compared with that predicted by the analytical model. The micropump is used for cooling cooling of an Intel® CoreTM i5 chip which produces a maximum heat of 95 W over an area of 3.75 × 3.75 cm. Based on the parametric studies a design for the cascade EOF micropump is proposed which provides a maximum flow rate of 14.16 ml/min and a maximum back pressure of 572.5 Pa to maintain a maximum chip temperature of 310.63 K.

References

1.
Eng
,
P. F.
,
Nithiarasu
,
P.
,
Arnold
,
A. K.
,
Igic
,
P.
, and
Guy
,
O. J.
,
2007
, “
Electro-Osmotic Flow Based Cooling System for Microprocessors
,”
International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems
(
EuroSime 2007
), London, April 16–18.10.1109/ESIME.2007.360041
2.
Nguyen
,
N. T.
, and
Wereley
,
S. T.
,
2002
,
Fundamentals and Applications of Microfluidics
,”
Artech House
,
Norwood, MA
.
3.
Chen
,
C. H.
, and
Santiago
,
J. G.
,
2002
, “
A Planar Electroosmotic Micropump
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
672
683
.10.1109/JMEMS.2002.805055
4.
Bruus
,
H.
, 2004,
Theoretical Microfluidics
,
Oxford University Press
,
New York
.
5.
Mampallil
,
D.
,
2011
, “
Microuidic Flow Driven by Electric Fields
,” Ph.D. thesis, University of Twente, Enschede, The Netherlands.
6.
Laser
,
D. J.
,
Myers
,
A. M.
,
Yao
,
S.
,
Bell
,
K. F.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
, and
Kenny
,
T. W.
,
2003
, “
Silicon Electroosmotic Micropumps for Integrated Circuit Thermal Management
,”
12th International Conference on Solid State Sensors, Actuators and Microsystems
(
TRANSDUCERS'03
),
Boston
, MA, June 8–12, pp.
151
154
.10.1109/SENSOR.2003.1215275
7.
Marwan
,
F. A.
,
Roy
,
A. K.
,
Ganguli
,
S.
, and
Banerjee
,
R. K.
,
2012
, “
Enhanced Electro-Osmotic Flow Pump for Micro-Scale Heat Exchangers
,”
ASME 3rd International Conference on Micro/Nanoscale Heat and Mass Transfer
(
MNHMT2012
), Atlanta, GA, March 3–6, ASME Paper No. MNHMT2012-75026.10.1115/MNHMT2012-75026
8.
Jiang
,
L.
,
Mikkelsen
,
J.
,
Koo
,
J. M.
,
Huber
,
D.
,
Yao
,
S.
,
Zhang
,
L.
,
Zhou
,
P.
,
Maveety
,
J. G.
,
Prasher
,
R.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2002
, “
Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits
,”
IEEE Trans. Comp. Packag. Technol.
,
25
(
3
), pp.
347
355
.10.1109/TCAPT.2002.800599
9.
Barman
,
U.
,
Sen
,
A. K.
, and
Mishra
,
S. C.
,
2013
, “
Theoretical and Numerical Investigations of an Electroosmotic Flow Micropump With Interdigitated Electrodes
,”
Microsyst. Technol.
,
20
(
1
), pp.
157
168
.10.1007/s00542-013-1893-x
10.
Brask
,
A.
,
Goranović
,
G.
,
Bruus
,
H.
, and
Brask
,
A.
,
2003
, “
Theoretical Analysis of the Low-Voltage Cascade Electro-Osmotic Pump
,”
J. Sens. Actuators
,
92
(
1–2
), pp.
127
132
.10.1016/S0925-4005(03)00130-8
11.
Berrouche
,
Y.
,
Avenas
,
Y.
,
Schaeffer
,
C.
,
Chang
,
H.
, and
Wang
,
P.
,
2009
, “
Design of a Porous Electroosmotic Pump Used in Power Electronic Cooling
,”
Trans. Ind. Appl.
,
45
(
6
), pp.
2073
2079
.10.1109/TIA.2009.2031934
12.
Sadeghi
,
A.
,
Fattahi
,
M.
, and
Saidi
,
M. H.
,
2011
, “
An Approximate Analytical Solution for Electro-Osmotic Flow of Power-Law Fluids in a Planar Microchannel
,”
ASME J. Heat Transfer
,
133
(
9
), p.
091701
.10.1115/1.4003968
13.
Chakraborty
,
S.
,
2006
, “
Augmentation of Peristaltic Microflows Through Electro-Osmotic Mechanisms
,”
J. Phys. D
,
39
(
24
), pp.
5356
5363
.10.1088/0022-3727/39/24/037
14.
Coelho
,
P. M.
,
Alves
,
M. A.
, and
Pinho
,
F. T.
,
2012
, “
Forced Convection in Electro-Osmotic/Poiseuille Micro-Channel Flows of Viscoelastic Fluids: Fully Developed Flow With Imposed Wall Heat Flux
,”
Microfluid Nanofluid
,
12
(
1–4
), pp.
431
449
.10.1007/s10404-011-0886-2
15.
Tang
,
G. Y.
,
Yang
,
C.
,
Chai
,
J. C.
, and
Gong
,
H. Q.
,
2004
, “
Joule Heating Effect on Electro-Osmotic Flow and Mass Species Transport in a Microcapillary
,”
Int. J. Heat Mass Transfer
,
47
(
2
), pp.
215
227
.10.1016/j.ijheatmasstransfer.2003.07.006
16.
Probstein
,
R. F.
,
1994
,
Physicochemical Hydrodynamics: An Introduction
, 2nd ed.,
Wiley
,
New York.
17.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
, “
Laminar Flow Forced Convection in Ducts
,”
Academic
,
New York
.
You do not currently have access to this content.