A new one-dimensional thermal network modeling approach is proposed that can accurately predict transient/dynamic temperature distribution of passive cooling systems. The present model has applications in variety of electronic, power electronic, photonics, and telecom systems, especially where the system load fluctuates over time. The main components of a cooling system including: heat spreaders, heat pipes, and heat sinks as well as thermal boundary conditions such as natural convection and radiation heat transfer are analyzed, analytically modeled and presented in the form of resistance and capacitance (RC) network blocks. The present model is capable of predicting the transient/dynamic (and steady state) thermal behavior of cooling system with significantly less cost of modeling compared to conventional numerical simulations. Furthermore, the present method takes into account system “thermal inertia” and is capable of capturing thermal lags in various components. The model is presented in two forms: zero-dimensional and one-dimensional which are different in terms of complicacy. A custom-designed test-bed is also built and a comprehensive experimental study is conducted to validate the proposed model. The experimental results show great agreement, less than 4.5% relative difference in comparison with the modeling results.

References

References
1.
Gurrum
,
S. P.
,
Suman
,
S. K.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2004
, “
Thermal Issues in Next-Generation Integrated Circuits
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
709
714
.10.1109/TDMR.2004.840160
2.
McGlen
,
R. J.
,
Jachuck
,
R.
, and
Lin
,
S.
,
2004
, “
Integrated Thermal Management Techniques for High Power Electronic Devices
,”
App. Therm. Eng.
,
24
(
8–9
), pp.
1143
1156
.10.1016/j.applthermaleng.2003.12.029
3.
Zuo
,
Z.
,
Hoover
,
L. R.
, and
Phillips
,
A. L.
,
2002
, “
Advanced Thermal Architecture for Cooling of High Power Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
629
634
.10.1109/TCAPT.2002.807995
4.
Wunderle
,
B.
, and
Michel
,
B.
,
2006
, “
Progress in Reliability Research in the Micro and Nano Region
,”
Microelectron. Reliab.
,
46
(
9–11
), pp.
1685
1694
.10.1016/j.microrel.2006.08.005
5.
Suhir
,
E.
,
2013
, “
Thermal Stress Failures in Electronics and Photonics: Physics, Modeling, Prevention
,”
J. Therm. Stresses
,
36
(
6
), pp.
537
563
.10.1080/01495739.2013.784119
6.
Suhir
,
E.
,
Shangguan
,
D.
, and
Bechou
,
L.
,
2013
, “
Predicted Thermal Stresses in a Trimaterial Assembly With Application to Silicon-Based Photovoltaic Module
,”
ASME J. Appl. Mech.
,
80
(
2
), p.
021008
.10.1115/1.4007477
7.
Kakaç
,
S.
, and
Yener
,
Y.
,
1993
, “
One-Dimensional Steady-State Heat Conduction
,”
Heat Conduction
,
3rd ed.
, Taylor & Francis, Washington, DC, pp.
45
93
.
8.
Moghaddam
,
S.
,
Rada
,
M.
,
Shooshtari
,
A.
,
Ohadi
,
M.
, and
Joshi
,
Y.
,
2003
, “
Evaluation of Analytical Models for Thermal Analysis and Design of Electronic Packages
,”
Microelectron. J.
,
34
(
3
), pp.
223
230
.10.1016/S0026-2692(02)00192-1
9.
Luo
,
X.
,
Mao
,
Z.
,
Liu
,
J.
, and
Liu
,
S.
,
2011
, “
An Analytical Thermal Resistance Model for Calculating Mean Die Temperature of a Typical BGA Packaging
,”
Thermochim. Acta
,
512
(
1–2
), pp.
208
216
.10.1016/j.tca.2010.10.009
10.
Liu
,
S.
,
Leung
,
B.
,
Neckar
,
A.
,
Memik
,
S. O.
,
Memik
,
G.
, and
Hardavellas
,
N.
,
2011
, “
Hardware/Software Techniques for DRAM Thermal Management
,” IEEE 17th International Symposium on High Performance Computer Architecture (
HPCA
), San Antonio, TX, February 12–16, pp.
515
525
.10.1109/HPCA.2011.5749756
11.
Zhao
,
R.
,
Gosselin
,
L.
,
Fafard
,
M.
, and
Ziegler
,
D. P.
,
2013
, “
Heat Transfer in Upper Part of Electrolytic Cells: Thermal Circuit and Sensitivity Analysis
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
212
225
.10.1016/j.applthermaleng.2013.02.002
12.
El-Nasr
,
A. A.
, and
El-Haggar
,
S. M.
,
1996
, “
Effective Thermal Conductivity of Heat Pipes
,”
Heat Mass Transfer
,
32
(
1–2
), pp.
97
101
.10.1007/s002310050097
13.
Zuo
,
J.
, and
Faghri
,
A.
,
1998
, “
A Network Thermodynamic Analysis of the Heat Pipe
,”
Int. J. Heat Mass Transfer
,
41
(
11
), pp.
1473
1484
.10.1016/S0017-9310(97)00220-2
14.
Shabgard
,
H.
, and
Faghri
,
A.
,
2011
, “
Performance Characteristics of Cylindrical Heat Pipes With Multiple Heat Sources
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3410
3419
.10.1016/j.applthermaleng.2011.06.026
15.
Romary
,
F.
, and
Caldeira
,
A.
,
2011
, “
Thermal Modelling to Analyze the Effect of Cell Temperature on PV Modules Energy Efficiency
,”
14th European Conference on Power Electronics and Applications (EPE 2011), Birmingham, UK, August 30–September 1
.
16.
Del Valle
,
P. G.
, and
Atienza
,
D.
,
2011
, “
Emulation-Based Transient Thermal Modeling of 2D/3D Systems-on-Chip With Active Cooling
,”
Microelectron. J.
,
42
(
4
), pp.
564
571
.10.1016/j.mejo.2010.08.003
17.
Barcella
,
M.
,
Huang
,
W.
,
Skadron
,
K.
, and
Stan
,
M.
,
2002
, “
Architecture-Level Compact Thermal R-C Modeling
,” Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, Technical Report No. CS-2002-20.
18.
Stan
,
M. R.
,
Skadron
,
K.
,
Barcella
,
M.
,
Huang
,
W.
,
Sankaranarayanan
,
K.
, and
Velusamy
,
S.
,
2003
, “
HotSpot: A Dynamic Compact Thermal Model at the Processor-Architecture Level
,”
Microelectron. J.
,
34
(
12
), pp.
1153
1165
.10.1016/S0026-2692(03)00206-4
19.
Magnone
,
P.
,
Fiegna
,
C.
,
Greco
,
G.
,
Bazzano
,
G.
,
Rinaudo
,
S.
, and
Sangiorgi
,
E.
,
2013
, “
Numerical Simulation and Modeling of Thermal Transient in Silicon Power Devices
,”
Solid-State Electron.
,
88
, pp.
69
72
.10.1016/j.sse.2013.04.012
20.
Cova
,
P.
,
Bernardoni
,
M.
,
Delmonte
,
N.
, and
Menozzi
,
R.
,
2011
, “
Dynamic Electro-Thermal Modeling for Power Device Assemblies
,”
Microelectron. Reliab.
,
51
(
9–11
), pp.
1948
1953
.10.1016/j.microrel.2011.06.016
21.
López-Walle
,
B.
,
Gauthier
,
M.
, and
Chaillet
,
N.
,
2010
, “
Dynamic Modelling for Thermal Micro-Actuators Using Thermal Networks
,”
Int. J. Therm. Sci.
,
49
(
11
), pp.
2108
2116
.10.1016/j.ijthermalsci.2010.06.012
22.
Miana
,
M.
, and
Cortés
,
C.
,
2010
, “
Transient Thermal Network Modeling Applied to Multiscale Systems. Part II: Application to an Electronic Control Unit of an Automobile
,”
IEEE Trans. Adv. Packag.
,
33
(
4
), pp.
938
952
.10.1109/TADVP.2010.2074201
23.
Miana
,
M.
, and
Cortés
,
C.
,
2010
, “
Transient Thermal Network Modeling Applied to Multiscale Systems. Part I: Definition and Validation
,”
IEEE Trans. Adv. Packag.
,
33
(
4
), pp.
924
937
.10.1109/TADVP.2010.2074200
24.
Ramallo-González
,
A. P.
,
Eames
,
M. E.
, and
Coley
,
D. A.
,
2013
, “
Lumped Parameter Models for Building Thermal Modelling: An Analytic Approach to Simplifying Complex Multi-Layered Constructions
,”
Energy Build.
,
60
, pp.
174
184
.10.1016/j.enbuild.2013.01.014
25.
Buonomano
,
A.
, and
Palombo
,
A.
,
2014
, “
Building Energy Performance Analysis by an In-House Developed Dynamic Simulation Code: An Investigation for Different Case Studies
,”
Appl. Energy
,
113
, pp.
788
807
.10.1016/j.apenergy.2013.08.004
26.
Athienitis
,
A.
,
Kalogirou
,
S. A.
, and
Candanedo
,
L.
,
2012
, “
Modeling and Simulation of Passive and Active Solar Thermal Systems
,”
Comprehensive Renewable Energy
, Vol.
3
: Solar Thermal Systems: Components and Applications,
Elsevier, Ltd.
, Amsterdam, Netherlands, pp.
357
417
.10.1016/B978-0-08-087872-0.00311-5
27.
Gholami
,
A.
, and
Bahrami
,
M.
,
2014
, “
Spreading Resistance in Anisotropic Rectangular Plates With Multiple Heat Sources and Sinks
,”
10th International Conference on Heat Transfer, Fluid Mechanics, and Thermodynamics
, Orlando, FL, July 14–16.
28.
Ferrandi
,
C.
,
Iorizzo
,
F.
,
Mameli
,
M.
,
Zinna
,
S.
, and
Marengo
,
M.
,
2013
, “
Lumped Parameter Model of Sintered Heat Pipe: Transient Numerical Analysis and Validation
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1280
1290
.10.1016/j.applthermaleng.2012.07.022
29.
Zhu
,
N.
, and
Vafai
,
K.
,
1999
, “
Analysis of Cylindrical Heat Pipes Incorporating the Effects of Liquid-Vapor Coupling and Non-Darcian Transport—A Closed Form Solution
,”
Int. J. Heat Mass Transfer
,
42
(18), pp.
3405
3418
.10.1016/S0017-9310(99)00017-4
30.
Mostafavi
,
G.
,
2013
, “
Effect of Fin Interruptions on Natural Convection Heat Transfer From a Rectangular Interrupted Single-Wall
,”
ASME
Paper No. IPACK2013-73129. 10.1115/IPACK2013-73129
31.
Dede
,
E.
,
2012
, “
Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
.10.1115/1.4007159
32.
Xie
,
G.
, and
Liu
,
J.
,
2012
, “
Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel Heat Sink for Chip Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041010
.10.1115/1.4023035
33.
Xie
,
G.
,
Liu
,
J.
, and
Liu
,
Y.
, “
Comparative Study of Thermal Performance of Longitudinal and Transversal-Wavy Microchannel Heat Sinks for Electronic Cooling
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021008
.10.1115/1.4023530
34.
Xie
,
G.
,
Zhang
,
F.
,
Sundén
,
B.
, and
Zhang
,
W.
,
2014
, “
Constructal Design and Thermal Analysis of Microchannel Heat Sinks With Multistage Bifurcations in Single-Phase Liquid Flow
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
791
802
.10.1016/j.applthermaleng.2013.10.042
35.
Incropera
,
F.
,
DeWitt
,
D.
,
Bergrnan
,
T.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
, Wiley, Hoboken, NJ, pp.
559
780
.
You do not currently have access to this content.