In this paper, a thermal resistance network analytical model is proposed to investigate the thermal resistance and pressure drop in serpentine channel heat sinks with 180 deg bends. The total thermal resistance is obtained using a thermal resistance network model based on the equivalent thermal circuit method. Pressure drop is derived considering straight channel and bend loss because the bends interrupt the hydrodynamic boundary periodically. Considering the effects of laminar flow development and redevelopment, the bend loss coefficient is obtained as a function of the Reynolds number, aspect ratios, widths of fins, and turn clearances, through a three-regime correlation. The model is then experimentally validated by measuring the temperature and pressure characteristics of heat sinks with different Reynolds numbers and different geometric parameters. Finally, the temperature-rise and pressure distribution of the thermal fluid with Reynolds numbers of 500, 1000, and 1500 are examined utilizing this model.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Xie
,
X. L.
,
Tao
,
W. Q.
, and
He
,
Y. L.
,
2007
, “
Numerical Study of Turbulent Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
ASME J. Electron. Packag.
,
129
(
3
), pp.
247
255
.10.1115/1.2753887
3.
Xie
,
G. N.
,
Liu
,
J.
,
Zhang
,
W. H.
, and
Sunden
,
B.
,
2012
, “
Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel Heat Sink for Chip Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041010
.10.1115/1.4023035
4.
Perret
,
C.
,
Boussey
,
J.
,
Schaeffer
,
C.
, and
Coyaud
M.
,
2000
, “
Analytic Modeling, Optimization, and Realization of Cooling Devices in Silicon Technology
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
4
), pp.
665
672
.10.1109/6144.888851
5.
Xie
,
G. N.
,
Liu
,
J.
,
Liu
,
Y. Q.
,
Sunden
,
B.
, and
Zhang
,
W. H.
,
2013
, “
Comparative Study of Thermal Performance of Longitudinal and Transversal-Wavy Microchannel Heat Sinks for Electronic Cooling
,”
ASME J. Electron. Packag.
,
135
(
2
), Paper No. 021008.10.1115/1.4023530
6.
Biswal
,
L.
,
Chakraborty
,
S.
, and
Som
,
S. K.
,
2009
, “
Design and Optimization of Single-Phase Liquid Cooled Microchannel Heat Sink
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
4
), pp.
876
886
.10.1109/TCAPT.2009.2025598
7.
Kee
,
R. J.
,
Korada
,
P.
,
Walters
,
K.
, and
Pavol
,
M.
,
2002
, “
A Generalized Model of the Flow Distribution in Channel Networks of Planar Fuel Cells
,”
J. Power Sources
,
109
(
1
), pp.
148
159
.10.1016/S0378-7753(02)00090-3
8.
Maharudrayya
,
S.
,
Jayanti
,
S.
, and
Deshpande
,
A.
,
2005
, “
Flow Distribution and Pressure Drop in Parallel-Channel Configurations of Planar Fuel Cells
,”
J. Power Sources
,
144
(
1
), pp.
94
106
.10.1016/j.jpowsour.2004.12.018
9.
Wang
,
C. C.
,
Yang
,
K. S.
,
Tsai
,
J. S.
, and
Chen
I. Y.
,
2011
, “
Characteristics of Flow Distribution in Compact Parallel Flow Heat Exchangers, Part I: Typical Inlet Header
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3226
3234
.10.1016/j.applthermaleng.2011.06.004
10.
Wang
,
C. C.
,
Yang
,
K. S.
,
Tsai
,
J. S.
, and
Chen
,
I. Y.
,
2011
, “
Characteristics of Flow Distribution in Compact Parallel Flow Heat Exchangers, Part II: Modified Inlet Header
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3235
3242
.10.1016/j.applthermaleng.2011.06.003
11.
Prabhakara
,
R. B.
,
Krishna
,
K. P.
, and
Das
,
S. K.
,
2002
, “
Effect of Flow Distribution to the Channels on the Thermal Performance of a Plate Heat Exchanger
,”
Chem. Eng. Process.
,
41
(
1
), pp.
49
58
.10.1016/S0255-2701(01)00105-2
12.
Cho
,
E. S.
,
Choi
,
J. W.
,
Yoon
,
J. S.
, and
Kim
,
M. S.
,
2010
, “
Experimental Study on Microchannel Heat Sinks Considering Mass Flow Distribution With Non-Uniform Heat Flux Conditions
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
2159
2168
.10.1016/j.ijheatmasstransfer.2009.12.026
13.
Wang
,
J.
, and
Wang
,
H.
,
2012
, “
Discrete Approach for Flow Field Designs of Parallel Channel Configurations in Fuel Cells
,”
Int. J. Hydrogen Energy
,
37
(
14
), pp.
10881
10897
.10.1016/j.ijhydene.2012.04.034
14.
Chintada
,
S.
,
Ko
,
K. H.
, and
Anand
,
N. K.
,
1999
, “
Heat Transfer in 3-D Serpentine Channels With Right-Angle Turns
,”
Numer. Heat Transfer, Part A
,
36
(
8
), pp.
781
806
.10.1080/104077899274453
15.
Choi
,
J. M.
, and
Anand
,
N. K.
,
1995
, “
Turbulent Heat Transfer in a Serpentine Channel With a Series of Right-Angle Turns
,”
Int. J. Heat Mass Transfer
,
38
(
7
), pp.
1225
1236
.10.1016/0017-9310(94)00242-N
16.
Ramos-Alvarado
,
B.
,
Li
,
P.
,
Liu
H.
, and
Hernandez-Guerrero
,
A.
,
2011
, “
CFD Study of Liquid-Cooled Heat Sinks With Microchannel Flow Field Configurations for Electronics, Fuel Cells, and Concentrated Solar Cells
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2494
2507
.10.1016/j.applthermaleng.2011.04.015
17.
Zhang
,
T. T.
,
Jia
,
L.
,
Zhang
,
J. R.
, and
Jaluria
Y.
,
2010
, “
Numerical Simulation of Fluid Flow and Heat Transfer in U-Shape Microchannels
,”
ASME
Paper No. IMECE2010-39816.10.1115/IMECE2010-39816
18.
Oosthuizen
,
P. H.
, and
Austin
,
M.
,
2005
, “
Channel-to-Channel Pressure Differences in Serpentine Minichannel Flow Systems
,”
Microscale Thermophys. Eng.
,
9
(
1
), pp.
49
61
.10.1080/10893950590913233
19.
Modi
,
P. P.
, and
Jayanti
,
S.
,
2004
, “
Pressure Losses and Flow Maldistribution in Ducts With Sharp Bends
,”
Chem. Eng. Res. Des.
,
82
(
3
), pp.
321
331
.10.1205/026387604322870435
20.
Maharudrayya
,
S.
,
Jayanti
,
S.
, and
Deshpande
,
A. P.
,
2004
, “
Pressure Losses in Laminar Flow Through Serpentine Channels in Fuel Cell Stacks
,”
J. Power Sources
,
138
(
1–2
), pp.
1
13
.10.1016/j.jpowsour.2004.06.025
21.
Zhang
,
J. R.
,
Lin
,
P. T.
, and
Jaluria
Y.
,
2011
, “
Designs of Multiple Microchannel Heat Transfer Systems
,”
ASME
Paper No. IMECE2011-62539.10.1115/IMECE2011-62539
22.
Pharoah
,
J. G.
,
2006
, “
An Efficient Method for Estimating Flow in the Serpentine Channels and Electrodes of PEM Fuel Cells
,”
ASME
Paper No. ICNMM2006-96232.10.1115/ICNMM2006-96232
23.
Pal
,
D.
, and
Severson
,
M.
,
2005
, “
Simplified Network Based Modeling of Cold Plate in a CFD Environment
,”
ASME
Paper No. IPACK2005-73202.10.1115/IPACK2005-73202
24.
Fukue
,
T.
,
Ishizuka
,
M.
,
Nakagawa
,
S.
,
Hatakeyama
T.
,
Nakayama
,
W.
,
2010
, “
Resistance Network Analysis of Airflow and Heat Transfer in a Thin Electronic Equipment Enclosure With a Localized Finned Heat Sink
,”
ASME
Paper No. IHTC14-22979.10.1115/IHTC14-22979
25.
Copeland
,
D.
,
2000
, “
Optimization of Parallel Plate Heatsinks for Forced Convection
,”
16th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, March 21–23, pp.
266
272
.10.1109/STHERM.2000.837093
26.
Peng
,
B.
,
Zhang
,
Q. S.
,
Zhou
,
W.
,
Hao
,
X. H.
, and
Ding
,
L.
,
2012
, “
A Modified Correlation Criterion for Digital Image Correlation Considering the Effect of Light Variations in Deformation Measurements
,”
Opt. Eng.
,
51
(
1
), p.
017004
.10.1117/1.OE.51.1.017004
27.
Peng
,
B.
,
Huang
,
C. C.
,
Zhou
,
W.
,
Yu
,
H. J.
, and
Zeng
,
Z.
,
2013
, “
Improved Digital Image Correlation Method for Eliminating Pixel Shape-Induced Errors in Shear-Strain Calculations
,”
J. Test. Eval.
,
41
(
2
), p. JTE20120085.10.1520/JTE20120085
28.
Hao
,
X. H.
,
Li
,
X. K.
,
Peng
,
B.
,
Zhang
,
M.
, and
Zhu
,
Y.
,
2013
, “
Thermal Resistance Network Model for Heat Sink With Serpentine Channel
,”
Int. J. Numer. Modell.: Electron. Networks, Devices Fields
,
27
(
2
), pp.
298–308
.10.1002/jnm.1924
You do not currently have access to this content.