Polymer–ceramic composites have been prepared by dispersing Ca4La6(SiO4)4(PO4)2O2 (CLSP) ceramic filler in high density polyethylene (HDPE) matrix through melt mixing. Scanning electron micrographs reveal the extent of filler dispersion. The dielectric properties at 1 MHz and 5 GHz have been investigated as a function of filler content. The relative permittivity increases with filler loading, maintaining a low dielectric loss. The composite with highest filler loading of 0.4 volume fraction shows a relative permittivity of 5.1 and dielectric loss of 2.3 × 10−3 at 5 GHz. Experimentally observed values of relative permittivity at 5 GHz have been compared with the values calculated using various theoretical models. Both the coefficient of linear thermal expansion and tensile strength have been observed to decrease with filler loading, reaching a minimum value of 117 ppm/ °C and 20.7 MPa, respectively, at 0.4 volume fraction of filler. The composite with maximum filler loading of 0.4 volume fraction shows the highest thermal conductivity (TC) and is 1.2 W m−1 K−1.

References

References
1.
Bhattacharya
,
S. K.
, and
Tummala
,
R. R.
,
2001
, “
Integral Passives for Next Generation of Electronic Packaging: Application of Epoxy/Ceramic Nanocomposites as Integral Capacitors
,”
Microelectron. J.
,
32
(1), pp.
11
19
.10.1016/S0026-2692(00)00104-X
2.
Wersing
,
W.
, and
Dernovsek
,
O.
,
2004
, “
Multilayer Ceramic Technology
,”
Ceramic Materials for Electronics
,
R. C.
Buchanan
, ed.,
Marcel Dekker, Inc.
,
New York
, pp.
581
642
.
3.
Sebastian
,
M. T.
, and
Jantunen
,
H.
,
2010
, “
Polymer-Ceramic Composites of 0-3 Connectivity for Circuits in Electronics: A Review
,”
Int. J. Appl. Ceram. Technol.
,
7
(
4
), pp.
415
434
.10.1111/j.1744-7402.2009.02482.x
4.
Rimdusit
,
S.
, and
Ishida
,
H.
,
2000
, “
Development of New Class of Electronic Packaging Materials Based on Ternary Systems of Benzoxazine, Epoxy, and Phenolic Resins
,”
Polymer
,
41
(22), pp.
7941
7949
.10.1016/S0032-3861(00)00164-6
5.
Anjana
,
P. S.
,
Deepu
,
V.
,
Uma
,
S.
,
Mohanan
,
P.
,
Philip
,
J.
, and
Sebastian
,
M. T.
,
2010
, “
Dielectric, Thermal, and Mechanical Properties of CeO2-Filled HDPE Composites for Microwave Substrate Applications
,”
J. Polym. Sci., Part B: Polym. Phys.
,
48
(9), pp.
998
1008
.10.1002/polb.21988
6.
Murali
,
K. P.
,
Rajesh
,
S.
,
Prakash
,
O.
,
Kulkarni
,
A. R.
, and
Ratheesh
,
R.
,
2009
, “
Preparation and Properties of Silica Filled PTFE Flexible Laminates for Microwave Circuit Applications
,”
Composites, Part A
,
40
(8), pp.
1179
1185
.10.1016/j.compositesa.2009.05.007
7.
Thomas
,
S.
,
Deepu
, V
.
,
Uma
,
S.
,
Mohanan
,
P.
,
Philip
,
J.
, and
Sebastian
,
M. T.
,
2009
, “
Preparation, Characterization and Properties of Sm2Si2O7 Loaded Polymer Composites for Microelectronic Applications
,”
Mater. Sci. Eng. B
,
163
(2), pp.
67
75
.10.1016/j.mseb.2009.05.007
8.
Subodh
,
G.
,
Deepu
, V
.
,
Mohanan
,
P.
, and
Sebastian
,
M. T.
,
2009
, “
Dielectric Response of High Permittivity Polymer Ceramic Composite With Low Loss Tangent
,”
Appl. Phys. Lett.
,
95
(6), p.
062903
.10.1063/1.3200244
9.
George
,
S.
,
Deepu
, V
. N.
,
Mohanan
,
P.
, and
Sebastian
,
M. T.
,
2010
, “
Influence of Ca[(Li1/3Nb2/3)0.8Ti0.2]O3-δ Filler on the Microwave Dielectric Properties of Polyethylene and Polystyrene for Microelectronic Applications
,”
Polym. Eng. Sci.
,
50
(
3
), pp.
570
576
.10.1002/pen.21554
10.
George
,
S.
,
Anjana
,
P. S.
,
Sebastian
,
M. T.
,
Krupka
,
J.
,
Uma
,
S.
, and
Philip
,
J.
,
2010
, “
Dielectric, Mechanical, and Thermal Properties of Low-Permittivity Polymer–Ceramic Composites for Microelectronic Applications
,”
Int. J. Appl. Ceram. Technol.
,
7
(
4
),
461
474
.10.1111/j.1744-7402.2010.02510.x
11.
Joseph
,
T.
,
Uma
,
S.
,
Philip
,
J.
, and
Sebastian
,
M. T.
,
2012
, “
Dielectric, Thermal and Mechanical Properties of Sr2ZnSi2O7 Based Polymer/Ceramic Composites
,”
J. Mater. Sci.: Mater. Electron.
,
23
(
6
), pp.
1243
1254
.10.1007/s10854-011-0581-9
12.
Manu
,
K. M.
,
Soni
,
S.
,
Murthy
, V
. R. K.
, and
Sebastian
,
M. T.
,
2013
, “
Ba(Zn1/3Ta2/3)O3 Ceramics Reinforced High Density Polyethylene for Microwave Applications
,”
J. Mater. Sci.: Mater. Electron.
,
24
(6), pp.
2098
2105
.10.1007/s10854-013-1064-y
13.
Manu
,
K. M.
,
Ananthakumar
,
S.
, and
Sebastian
,
M. T.
,
2013
, “
Electrical and Thermal Properties of Low Permittivity Sr2Al2SiO7 Ceramic Filled HDPE Composites
,”
Ceram. Int.
,
39
(5), pp.
4945
4951
.10.1016/j.ceramint.2012.11.090
14.
Thomas
,
D.
, and
Sebastian
,
M. T.
,
2011
, “
Microwave Dielectric Properties of Ca2+xLa8-x(SiO4)6-x(PO4)xO2 Solid Solution
,”
J. Am. Ceram. Soc.
,
94
(8), pp.
2276
2278
.10.1111/j.1551-2916.2011.04639.x
15.
Zhou
,
W.
,
Qi
,
S.
,
An
,
Q.
,
Zhao
,
H.
, and
Liu
,
N.
,
2007
, “
Thermal Conductivity of Boron Nitride Reinforced Polyethylene Composites
,”
Mater. Res. Bull.
,
42
(10), pp.
1863
1873
.10.1016/j.materresbull.2006.11.047
16.
Thomas
,
D.
,
Abhilash
,
P.
, and
Sebastian
,
M. T.
,
2013
, “
Effect of Isovalent Substitutions on the Microwave Dielectric Properties of Ca4La6(SiO4)4(PO4)2O2 Apatite
,”
J. Alloys Compd.
,
546
, pp.
72
76
.10.1016/j.jallcom.2012.08.085
17.
Sebastian
,
M. T.
,
2008
,
Dielectric Materials for Wireless Communication
,
Elseiver
,
Oxford, UK
.
18.
Xu
,
J.
,
Moon
,
K.-S.
,
Tison
,
C.
, and
Wong
,
C. P.
,
2006
, “
A Novel Aluminum-Filled Composite Dielectric for Embedded Passive Applications
,”
IEEE Trans. Adv. Packag.
,
29
(
2
), pp.
295
306
.10.1109/TADVP.2006.874701
19.
Field
,
R. F.
,
1946
, “
The Formation of Ionized Water Films on Dielectrics Under Conditions of High Humidity
,”
J. Appl. Phys.
,
17
(5), pp.
318
325
.10.1063/1.1707720
20.
Tinga
,
W. R.
,
Voss
,
W. A. G.
, and
Blossey
,
D. F.
,
1973
, “
Generalized Approach to Multiphase Dielectric Mixture Theory
,”
J. Appl. Phys.
,
44
(
9
), pp.
3897
3902
.10.1063/1.1662868
21.
Bur
,
A. J.
,
1985
, “
Dielectric Properties of Polymers at Microwave Frequencies: A Review
,”
Polymer
,
26
(7), pp.
963
977
.10.1016/0032-3861(85)90216-2
22.
Steeman
,
P. A. M.
,
Maurer
,
F. H. J.
, and
van Es
,
M. A.
,
1991
, “
Dielectric Monitoring of Water Absorption in Glass-Bead-Filled High-Density Polyethylene
,”
Polymer
,
32
(
3
), pp.
523
530
.10.1016/0032-3861(91)90460-Z
23.
Xiang
,
F.
,
Wang
,
H.
, and
Yao
,
X.
,
2006
, “
Preparation and Dielectric Properties of Bismuth-Based Dielectric/PTFE Microwave Composites
,”
J. Eur. Ceram. Soc.
,
26
(10–11), pp.
1999
2002
.10.1016/j.jeurceramsoc.2005.09.048
24.
Amagai
,
M
.,
2002
, “
Mechanical Reliability in Electronic Packaging
,”
Microelectron. Reliab.
,
42
(4–5), pp.
607
627
.10.1016/S0026-2714(02)00037-9
25.
Rajesh
,
S.
,
Nisa
,
V. S.
,
Murali
,
K. P.
, and
Ratheesh
,
R.
,
2009
, “
Microwave Dielectric Properties of PTFE/Rutile Nanocomposites
,”
J. Alloys Compd.
,
477
(1–2), pp.
677
682
.10.1016/j.jallcom.2008.10.092
26.
Gemant
,
A
.,
1938
, “
The Role of Solid Friction in Synthetic Dielectrics
,”
J. Appl. Phys.
,
9
(11), pp.
730
734
.10.1063/1.1710382
27.
Curtis
,
A. J.
,
1962
, “
Dielectric Loss in ‘Nonpolar’ Polymers
,”
J. Chem. Phys.
,
36
(12), pp.
3500
3501
.10.1063/1.1732491
28.
Conklin
,
G. E.
,
1964
, “
Reduction of Dielectric Loss in Polyethylene
,”
J. Appl. Phys.
,
35
(11), pp.
3228
3235
.10.1063/1.1713203
29.
Todd
,
M. G.
, and
Shi
,
F. G.
,
2003
, “
Molecular Basis of the Interphase Dielectric Properties of Microelectronic and Optoelectronic Packaging Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
3
), pp.
667
672
.10.1109/TCAPT.2003.817862
30.
Mallet
,
P.
,
Guérin
,
C. A.
, and
Sentenac
,
A.
,
2005
, “
Maxwell–Garnett Mixing Rule in the Presence of Multiple Scattering: Derivation and Accuracy
,”
Phys. Rev. B: Condens. Matter
,
72
(1), p.
014205
.10.1103/PhysRevB.72.014205
31.
Goncharenko
,
A. V.
,
Lozovski
,
V. Z.
, and
Venger
,
E. F.
,
2000
, “
Lichtenecker's Equation: Applicability and Limitations
,”
Opt. Commun.
,
174
(1–4), pp.
19
32
.10.1016/S0030-4018(99)00695-1
32.
Jayasundere
,
N.
, and
Smith
,
B. V.
,
1993
, “
Dielectric–Constant for Binary Piezoelectric 0-3 Composites
,”
J. Appl. Phys.
,
73
(5), pp.
2462
2466
.10.1063/1.354057
33.
Rao
,
Y.
,
Qu
,
J.
,
Marinis
,
T.
, and
Wong
,
C. P.
,
2000
, “
A Precise Numerical Prediction of Effective Dielectric Constant for Polymer-Ceramic Composite Based on Effective-Medium Theory
,”
IEEE Trans. Compon. Packag. Technol.
,
23
(
4
), pp.
680
683
.10.1109/6144.868841
34.
Cannillo
,
V.
,
Bondioli
,
F.
,
Lusvarghi
,
L.
,
Montorsi
,
M.
,
Avella
,
M.
,
Errico
,
M. E.
, and
Malinconico
,
M.
,
2006
, “
Modeling of Ceramic Particles Filled Polymer-Matrix Nanocomposites
,”
Compos. Sci. Technol.
,
66
(7–8), pp.
1030
1037
.10.1016/j.compscitech.2005.07.030
35.
Rao
,
V.
,
Ashokan
,
P. V.
, and
Shridhar
,
M. H.
,
2000
, “
Studies of Dielectric Relaxation and AC Conductivity in Cellulose Acetate Hydrogen Phthalate–Poly(Methyl Methacrylate) Blends
,”
Mater. Sci. Eng. A
,
281
(1–2), pp.
213
220
.10.1016/S0921-5093(99)00723-6
36.
Ahmed
,
H. M.
, and
Aziz
,
S.-A. B.
,
2008
, “
Dielectric Properties of Commercial Non-Polar Polymers
,”
J. Zankoy Sulaimani Part A
, 11(1), available at: www.univsul.org/Bilawkirawekan_U/page_1-8.pdf
37.
Raghava
,
R. S.
,
1988
, “
Thermal Expansion of Organic and Inorganic Matrix Composites: A Review of Theoretical and Experimental Studies
,”
Polym. Compos.
,
9
(
1
), pp.
1
11
.10.1002/pc.750090102
38.
Holliday
,
L.
, and
Robinson
,
D.
,
1973
, “
Review: The Thermal Expansion of Composites Based on Polymers
,”
J. Mater. Sci.
,
8
(3), pp.
301
311
.10.1007/BF00550148
39.
Rusu
,
M.
,
Sofian
,
N.
, and
Rusu
,
D.
,
2001
, “
Mechanical and Thermal Properties of Zinc Powder Filled High Density Polyethylene Composites
,”
Polym. Test.
,
20
(4), pp.
409
417
.10.1016/S0142-9418(00)00051-9
40.
Herrmann
,
K. P.
, and
Oshmyan
,
V. G.
,
2002
, “
Theoretical Study of Formation of Pores in Elastic Solids: Particulate Composites, Rubber Toughened Polymers, Crazing
,”
Int. J. Solids Struct.
,
39
(11), pp.
3079
3104
.10.1016/S0020-7683(01)00283-9
You do not currently have access to this content.