Compared to single-phase heat transfer, two-phase microchannel heat sinks utilize latent heat to reduce the needed flow rate and to maintain a rather uniform temperature close to the boiling temperature. The challenge in the application of cooling for electronic chips is the necessity of modeling a large number of microchannels using large number of meshes and extensive computation time. In the present study, a modified porous media method modeling of two-phase flow in microchannels is performed. Compared with conjugate method, which considers individual channels and walls, it saves computation effort and provides a more convenient means to perform optimization of channel geometry. The porous media simulation is applied to a real chip. The channels of high heat load will have higher qualities, larger flow resistances, and lower flow rates. At a constant available pressure drop over the channels, the low heat load channels show much higher mass flow rates than needed. To avoid this flow maldistribution, the channel widths on a chip are adjusted to ensure that the exit qualities and mass flow rate of channels are more uniform. As a result, the total flow rate on the chip is drastically reduced, and the temperature gradient is also minimized. However, it only gives a relatively small reduction on the maximum surface temperature of chip.

References

References
1.
Garimella
,
S. V.
,
Joshi
,
Y.
,
Bar-Cohen
,
A.
,
Mahajan
,
R.
, and
Toh
,
K. C.
,
2002
, “
Thermal Challenges in Next Generation Electronic Systems—Summary of Panel Presentations and Discussions
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
569
575
.10.1109/TCAPT.2003.809113
2.
Stan
,
M. R.
,
Skadron
,
K.
,
Barcella
,
M.
,
Huang
,
W.
,
Sankaranarayanan
,
K.
, and
Velusamy
,
S.
,
2002
, “
HotSpot: A Dynamic Compact Thermal Model at the Processor-Architecture Level
,”
Microelectron. J.
,
34
(
12
), pp.
1153
1165
.10.1016/S0026-2692(03)00206-4
3.
Skadron
,
K.
,
Stan
,
M. R.
,
Sankaranarayanan
,
K.
,
Huang
,
W.
,
Velusamy
,
S.
, and
Tarjan
,
D.
,
2004
, “
Temperature-Aware Microarchitecture: Modeling and Implementation
,”
ACM Trans. Archit. Code Optim.
,
1
(
1
), pp.
94
125
.10.1145/980152.980157
4.
Skadron
,
K.
,
Stan
,
M. R.
,
Huang
,
W.
,
Velusamy
,
S.
,
Sankaranarayanan
,
K.
, and
Tarjan
,
D.
,
2003
, “
Temperature-Aware Microarchitecture
,”
30th Annual International Symposium on Computer Architecture
(ISCA’03), San Diego, CA, June 9–11, pp.
2
13
.
5.
Saitoh
,
S.
,
Daiguji
,
H.
, and
Hihara
,
E.
,
2005
, “
Effect of Tube Diameter on Boiling Heat Transfer of R-134a in Horizontal Small-Diameter Tubes
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4973
4984
.10.1016/j.ijheatmasstransfer.2005.03.035
6.
Harirchian
,
T.
, and
Garimella
,
S. V.
,
2008
, “
Microchannel Size Effects on Local Flow Boiling Heat Transfer to a Dielectric Fluid
,”
Int. J. Heat Mass Transfer
,
51
(15–16), pp.
3724
3735
.10.1016/j.ijheatmasstransfer.2008.03.013
7.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2008
, “
Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
3
), pp.
187
227
.10.1080/15567260802317357
8.
Cooper
,
M. G.
,
1984
, “
Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
, pp.
157
239
.10.1016/S0065-2717(08)70205-3
9.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
I&EC Process Des. Dev.
,
5
(
3
), pp.
322
329
.10.1021/i260019a023
10.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2008
, “
A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels
,”
Int. J. Heat Mass Transfer
,
52
(7–8), pp.
2110
2118
.10.1016/j.ijheatmasstransfer.2008.10.022
11.
Xie
,
G. N.
,
Li
,
S. A.
,
Sundén
,
B.
,
Zhang
,
W. H.
, and
Li
,
H. B.
,
2014
, “
A Numerical Study of Thermal Performance of Microchannel Heat Sinks, With Multiple Length Bifurcation in Laminar Liquid Flow
,”
Numer. Heat Transfer, Part A
,
65
(2), pp.
107
126
.10.1080/10407782.2013.826084
12.
Xie
,
G. N.
,
Chen
,
Z. Y.
,
Sunden
,
B.
, and
Zhang
,
W. H.
,
2013
, “
Numerical Analysis of Flow and Thermal Performance of Liquid-Cooling Microchannel Heat Sinks With Bifurcation
,”
Numer. Heat Transfer, Part A
,
64
(11), pp.
902
919
.10.1080/10407782.2013.807689
13.
Xie
,
G. N.
,
Liu
,
J.
,
Zhang
,
W. H.
, and
Sunden
,
B.
,
2012
, “
Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel Heat Sink for Chip Cooling
,”
ASME J. Electron. Packag.
,
134
(4), p.
041010
.10.1115/1.4023035
14.
Xie
,
G. N.
,
Chen
,
Z. Y.
,
Sunden
,
B.
,
Zhang
,
W. H.
,
2013
, “
Numerical Predictions of Flow and Thermal Performance of Water-Cooled Single-Layer and Double-Layer Wavy Microchannel Heat Sinks
,”
Numer. Heat Transfer, Part A
,
63
(3), pp.
201
225
.10.1080/10407782.2013.730445
15.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugated Heat Transfer in the Micro-Channel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.10.1016/S0017-9310(99)00151-9
16.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3973
3985
.10.1016/S0017-9310(02)00101-1
17.
Liu
,
J. T.
,
Peng
,
X. F.
, and
Yan
,
W. M.
,
2007
, “
Numerical Study of Fluid Flow and Heat Transfer in Micro-Channel Cooling Passages
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
1855
1864
.10.1016/j.ijheatmasstransfer.2006.10.004
18.
Brunschwiler
,
T.
,
Paredes
,
S.
,
Drechsler
,
U.
,
Michel
,
B.
,
Cesar
,
W.
,
Töral
,
G.
,
Temiz
,
Y.
, and
Leblebici
,
Y.
,
2009
, “
Validation of the Porous-Medium Approach to Model Interlayer-Cooled 3D-Chip Stacks
,”
IEEE International Conference on 3D System Integration
(
3DIC 2009
), San Fransisco, CA, September 28–30.10.1109/3DIC.2009.5306530
19.
Koh
,
J. C. Y.
, and
Colony
,
R.
,
1989
, “
Heat Transfer of Microstructures for Integrated Circuits
,”
Int. Commun. Heat Mass Transfer
,
13
(
1
), pp.
89
98
.10.1016/0735-1933(86)90075-8
20.
Kim
,
S. J.
,
Kim
,
D.
, and
Lee
,
D. Y.
,
2000
, “
On the Local Thermal Equilibrium in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
43
(
10
), pp.
1735
1748
.10.1016/S0017-9310(99)00259-8
21.
Imke
,
U.
,
2004
, “
Porous Media Simplified Simulation of Single- and Two-Phase Flow Heat Transfer in Micro-Channel Heat Exchangers
,”
Chem. Eng. J.
,
101
(1–3), pp.
295
302
.10.1016/j.cej.2003.10.012
22.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2004
, “
Laminar Forced Convection Heat Transfer in the Combined Entry Region of Non-Circular Ducts
,”
ASME J. Heat Transfer
,
126
(
1
), pp.
54
61
.10.1115/1.1643752
23.
Lee
,
J.
, and
Mudawar
,
I.
,
2008
, “
Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase Micro-Channel Heat Sinks—Part 2. Subcooled Boiling Pressure Drop and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
(17–18), pp.
4327
4341
.10.1016/j.ijheatmasstransfer.2008.02.013
24.
Shah
,
M. M.
,
1977
, “
General Correlation for Heat Transfer During Subcooled Boiling in Pipes and Annuli
,”
ASHRAE Trans.
,
83
(
Pt 1
), pp.
202
217
.
25.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.10.1016/0017-9310(86)90205-X
26.
Tran
,
T. N.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
,
1996
, “
Small Circular- and Rectangular-Channel Boiling With Two Refrigerants
,”
Int. J. Multiphase Flow
,
22
(
3
), pp.
485
498
.10.1016/0301-9322(96)00002-X
27.
Zhang
,
W.
,
Hibiki
,
T.
, and
Mishima
,
K.
,
2004
, “
Correlation for Flow Boiling Heat Transfer in Mini-Channels
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5749
5763
.10.1016/j.ijheatmasstransfer.2004.07.034
28.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
Oxford, Oxford University
,
Oxford, UK
.
29.
Kim
,
S.-M.
, and
Mudawar
,
I.
,
2012
, “
Consolidated Method to Predicting Pressure Drop and Heat Transfer Coefficient for Both Subcooled and Saturated Flow Boiling in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
55
(13–14), pp.
3720
3731
.10.1016/j.ijheatmasstransfer.2012.02.061
30.
Churchill
,
S. W.
, and
Usagi
,
R.
,
1972
, “
A General Expression for the Correlation of Rates of Transfer and Other Phenomena
,”
AIChE J.
,
18
(6), pp.
1121
1128
.10.1002/aic.690180606
31.
Copeland
,
D.
,
1995
, “
Manifold Microchannel Heat Sinks: Analysis and Optimization
,”
ASME/JSME Therm. Eng.
,
4
, pp.
169
174
.
32.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic
,
New York
.
33.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(1), pp.
39
48
.
34.
Zivi
,
S. M.
,
1964
, “
Estimation of Steady State Steam Void Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
,
86
(2), pp.
247
252
.10.1115/1.3687113
35.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(10–11), pp.
2045
2059
.10.1016/j.ijheatmasstransfer.2003.12.006
36.
Kim
,
Y. J.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
,
Lee
,
Y. J.
, and
Lim
,
S. K.
,
2010
, “
Thermal Characterization of Interlayer Microfluidic Cooling of Three Dimensional Integrated Circuits With Nonuniform Heat Flux
,”
ASME Trans. J. Heat Transfer
,
132
(4), p.
041009
.10.1115/1.4000885
37.
Bergles
,
A. E.
,
1977
, “
Review of Instability in Two-Phase Systems
,”
Two- Phase Flows and Heat Transfer
, Vol.
1
,
S.
Kakac
and
F.
Mayinger
, eds.,
Hemisphere
,
Washington
, DC, pp.
383
422
.
38.
Boure
,
J. A.
,
Bergles
,
A. E.
, and
Tong
,
L. S.
,
1973
, “
Review of Two-Phase Flow Instability
,”
Nucl. Eng. Des.
,
25
(2), pp.
165
192
.10.1016/0029-5493(73)90043-5
39.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
,
126
(2), pp.
213
224
10.1115/1.1756145
You do not currently have access to this content.