The surface temperature of integrated circuit (IC) chips cooled with a single-phase liquid flow increases along the flow direction following the increase in the liquid temperature. Increasing the heat transfer coefficient along the flow direction is an effective way to enhance the cooling performance while mitigating the temperature nonuniformity and high pressure drop concerns. This investigation evaluates numerically the cooling performance of different flow channel designs suitable in 3D IC applications with channel heights restricted to 100 μm. Internal configurations featuring offset strip fins with variable fin density and variable spacing ribs were studied in an effort to minimize the temperature nonuniformity while maintaining a relatively low pressure drop. The performance of 13 different designs for the variable-fin-density configuration and three different rib configurations have been evaluated and compared with two baseline cases, corresponding to a smooth flow channel and a flow channel with continuous fins. All of the analyzed internal configurations are contained within a flow channel of 100 μm height and 910 μm width. A coolant chip formed by nine flow channels for the dissipation of 200 W of a 3D IC with a surface area of 1 cm2 is the base for this investigation. The best performing configuration resulted in a temperature variation of less than 30 K with a pressure drop of 34 kPa as compared to a temperature variation of 38 K and a pressure drop of 144 kPa with continuous fins and 51 K and 21 kPa for a smooth flow channel.

References

References
1.
Kandlikar
,
S. G.
,
2004
, “
High Flux Heat Removal With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
,
26
(
8
), pp.
5
14
.10.1080/01457630591003655
2.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2004
, “
Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cooling—Thermohydraulic Performance Enhancement and Fabrication Technology
,”
Heat Transfer Eng.
,
25
(
8
), pp.
5
16
.10.1080/01457630490519772
3.
Kandlikar
,
S. G.
, and
Upadhye
,
H. R.
,
2005
, “
Extending the Heat Flux Limit With Enhanced Microchannels in Direct Single-Phase Cooling of Computer Chips
,”
21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMITHERM
), San Jose, CA, March 15–17, pp.
8
15
.10.1109/STHERM.2005.1412152
4.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
,
2006
, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.10.1080/01457630701421703
5.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R.
,
Bezama
,
R.
,
Marston
,
K.
, and
Schmidt
,
R.
,
2007
, “
High Performance and Subambient Silicon Microchannel Cooling
,”
ASME J. Heat Transfer
,
129
(8), pp.
1046
1051
.10.1115/1.2724850
6.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Heat Transfer in Plain and Enhanced Microchannels
,”
ASME 4th International Conference on Nanochannels
, Microchannels and Minichannels, Limerick, Ireland, June 19–21,
ASME
Paper No. ICNMM2006-96227, pp. 943–951.10.1115/ICNMM2006-96227
7.
Kosar
,
A.
,
Mishra
,
C.
, and
Peles
,
Y.
,
2005
, “
Laminar Flow Across a Bank of Low Aspect Ratio Micro Pin Fins
,”
ASME J. Fluids Eng.
,
127
(
3
),
419
430
.10.1115/1.1900139
8.
Kosar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(
2
), pp.
121
131
.10.1115/1.2137760
9.
Kosar
,
A.
, and
Peles
,
Y.
,
2007
, “
Micro Scale Pin Fin Heat Sinks—Parametric Performance Evaluation Study
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
4
), pp.
855
865
.10.1109/TCAPT.2007.906334
10.
Escher
,
W.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2010
, “
A Novel High Performance, Ultrathin, Heat Sink for Electronics
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
586
598
.10.1016/j.ijheatfluidflow.2010.03.001
11.
Zhang
,
Y.
,
Dembla
,
A.
,
Joshi
,
Y.
, and
Bakir
,
M. S.
,
2012
, “
3D Stacked Microfluidic Cooling for High-Performance 3D ICs
,”
62nd IEEE Electronic Components and Technology Conference
(
ECTC
), San Diego, CA, May 29–June 1, pp.
1644
1650
.10.1109/ECTC.2012.6249058
12.
Zhang
,
Y.
, and
Bakir
,
M. S.
,
2013
, “
Independent Interlayer Microfluidic Cooling for Heterogeneous 3D IC Applications
,”
Electron. Lett.
,
49
(
6
), pp.
404
406
.10.1049/el.2012.3313
13.
Shafeie
,
H.
,
Abouali
,
O.
,
Jafarpur
,
K.
, and
Ahmadi
,
G.
,
2013
, “
Numerical Study of Heat Transfer Performance on Single-Phase Heat Sinks With Micro Pin-Fin Structures
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
68
76
.10.1016/j.applthermaleng.2013.04.008
14.
Adewumi
,
O. O.
,
Bello-Ochende
,
T.
, and
Meyer
,
J. P.
,
2013
, “
Constructal Design of Combined Microchannel and Micro Pin Fins for Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
66
, pp.
315
323
.10.1016/j.ijheatmasstransfer.2013.07.039
15.
Tullius
,
J. F.
,
Tullius
,
T. K.
, and
Bayazitoglu
,
Y.
,
2012
, “
Optimization of Short Micro Pin Fins in Minichannels
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
3921
3932
.10.1016/j.ijheatmasstransfer.2012.03.022
16.
Zhou
,
F.
, and
Catton
, I
.
,
2011
, “
Numerical Evaluation of Flow and Heat Transfer in Plate-Pin Fin Heat Sinks With Various Pin Cross-Sections
,”
Numer. Heat Transfer, Part A
,
60
(
2
), pp.
107
128
.10.1080/10407782.2011.588574
17.
Rubio-Jimenez
,
C. A.
,
Kandlikar
,
S. G.
, and
Hernandez-Guerrero
,
A.
,
2012
, “
Numerical Analysis of Novel Micro Pin Fin Heat Sink With Variable Fin Density
,”
IEEE Trans. Compon. Packag. Manuf.
,
2
(
5
), pp.
825
833
.10.1109/TCPMT.2012.2189925
18.
Rubio-Jimenez
,
C. A.
,
Kandlikar
,
S. G.
, and
Hernandez-Guerrero
,
A.
,
2012
, “
Performance of Online and Offset Micro Pin-Fin Heat Sinks With Variable Fin Density
,”
IEEE Trans. Compon. Packag. Manuf.
,
3
(
1
), pp.
86
93
.10.1109/TCPMT.2012.2225143
19.
Kandlikar
,
S. G.
, “
Review and Projections of Integrated Cooling Systems for 3D ICs
,”
ASME J. Electron. Packag
(accepted).10.1115/1.4027175
20.
Alfieri
,
F.
,
Tiwari
,
M. K.
,
Zinovik
,
I.
,
Poulikakos
,
D.
,
Brunschwiler
,
T.
, and
Michel
,
B.
,
2010
, “
3D Integrated Water Cooling of a Composite Multilayer Stack of Chips
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121402
.10.1115/1.4002287
21.
Al-Shemmeri
,
T.
,
2012
,
Engineering Fluid Mechanics
, Ventus Publishing ApS, London, pp.
17
18
.
22.
International Association for the Properties of Water and Steam
,
1997
,
IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,
Springer-Verlag
,
Berlin
.
23.
Okhotin
,
A. S.
,
Pushkarkii
,
A. S.
, and
Gorbachev
,
V. V.
,
1972
,
Thermophysical Properties of Semiconductors
,
Atom's Publication House
,
Moscow
.
24.
Glasbrenner
,
C. J.
, and
Slack
,
G. A.
,
1964
, “
Thermal Conductivity of Silicon and Germanium From 3°K to the Melting Point
,”
Phys. Rev.
,
134
(
4A
), pp.
A1058
A1069
.10.1103/PhysRev.134.A1058
25.
Dharaiya
,
V. V.
, and
Kandlikar
,
S. G.
,
2013
, “
A Numerical Study on the Effects of 2D Structured Sinusoidal Elements on Fluid Flow and Heat Transfer at Microscale
,”
Int. J. Heat Mass Transfer
,
57
(1), pp.
190
201
.10.1016/j.ijheatmasstransfer.2012.10.004
26.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Trans. Electron Devices
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
You do not currently have access to this content.