Three-dimensional (3D) stacking of integrated-circuit (IC) dies increases system density and package functionality by vertically integrating two or more dies with area-array through-silicon-vias (TSVs). This reduces the length of global interconnects and the signal delay time and allows improvements in energy efficiency. However, the accumulation of heat fluxes and thermal interface resistances is a major limitation of vertically integrated packages. Scalable cooling solutions, such as two-phase interlayer cooling, will be required to extend 3D stacks beyond the most modest numbers of dies. This paper introduces a realistic 3D chip stack along with a simulation method for the heat spreading and flow distribution among the channels of the evaporators. The model includes the significant sensitivity of each channel's friction factor to vapor quality, and hence mass flow to heat flux, which characterizes parallel two-phase flows. Simulation cases explore various placements of hot spots within the stack and effects which are unique to two-phase interlayer cooling. The results show that the effect of hot spots on individual dies can be mitigated by strong interlayer heat conduction if the relative position of the hot spots is selected carefully to result in a heat load and flow which are well balanced laterally.

References

1.
Meindl
,
J. D.
,
Davis
,
J. A.
,
Zarkesh-Ha
,
P.
,
Patel
,
C. S.
,
Martin
,
K. P.
, and
Kohl
,
P. A.
,
2002
, “
Interconnect Opportunities for Gigascale Integration
,”
IBM J. Res. Develop.
,
46
(
2/3
), pp.
245
263
.10.1147/rd.462.0245
2.
Garrou
,
P.
,
Bower
,
C.
, and
Ramm
,
P.
,
2008
,
Handbook of 3D Integration, Technology and Applications of 3D Integrated Circuits
, Vol.
1
,
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany
, pp.
13
24
.10.1002/9783527623051
3.
Sri-Jayantha
,
S. M.
,
McVicker
,
G.
,
Bernstein
,
K.
, and
Knickerbocker
,
J. U.
,
2008
, “
Thermomechanical Modeling of 3D Electronic Packages
,”
IBM J. Res. Develop.
,
52
(
6
), pp.
623
634
.10.1147/JRD.2008.5388568
4.
Ruch
,
P.
,
Brunschwiler
,
T.
,
Escher
,
W.
,
Paredes
,
S.
, and
Michel
,
B.
,
2011
, “
Toward Five-Dimensional Scaling: How Density Improves Efficiency in Future Computers
,”
IBM J. Res. Develop.
,
55
(
5
), pp.
15:1
15:13
.10.1147/JRD.2011.2165677
5.
International Technology Roadmap for Semiconductors (ITRS), 2008 Update, available at: http://www.itrs.net/Links/2008ITRS/update/2008_update.pdf
6.
Zimmermann
,
S.
,
Meijer
,
I.
,
Tiwari
,
M. K.
,
Paredes
,
S.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2012
, “
Aquasar: A Hot Water Cooled Data Center With Direct Energy Reuse
,”
Energy
,
43
(1), pp.
237
245
.10.1016/j.energy.2012.04.037
7.
Madhour
,
Y.
,
Olivier
,
J. A.
,
Costa-Patry
,
E.
,
Paredes
,
S.
,
Michel
,
B.
, and
Thome
,
J. R.
,
2011
, “
Flow Boiling of R134a in a Multi-Microchannel Heat Sink With Hotspot Heaters for Energy Efficient Microelectronic CPU Cooling Applications
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
6
), pp.
873
883
.10.1109/TCPMT.2011.2123895
8.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
, and
Thome
,
J. R.
,
2011
, “
Reasons to Use Two-Phase Refrigerant Cooling
,”
Electron. Cooling
,
17
(
1
), pp.
22
27
.
9.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of The Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.10.1080/01457630601117799
10.
Marcinichen
,
J. B.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2010
, “
Cooling of Microprocessors With Micro-Evaporation: A Novel Two-Phase Cooling Cycle
,”
Int. J. Refrig.
,
33
(7), pp.
1264
1276
.10.1016/j.ijrefrig.2010.06.008
11.
Dang
,
B.
,
Bakir
,
M. S.
,
Sekar
,
D. C.
,
King
,
C. R.
Jr.
, and
Meindl
,
J. D.
,
2010
, “
Integrated Microfluidic Cooling and Interconnects for 2D and 3D Chips
,”
IEEE Trans. Adv. Pack.
,
33
(
1
), pp.
79
87
.10.1109/TADVP.2009.2035999
12.
King
,
C. R.
Jr.
,
Sekar
,
D. C.
,
Bakir
,
M. S.
,
Dang
,
B.
,
Pikarsky
,
J.
, and
Meindl
,
J. D.
,
2008
, “
3D Stacking of Chips With Electrical and Microfluidic I/O Interconnects
,”
Proceedings of the Electronic Components and Technology Conference
(
ECTC 2008
), Lake Buena Vista, FL, May 27–30. 10.1109/ECTC.20084549941
13.
Brunschwiler
,
T.
,
Paredes
,
S.
,
Drechsler
,
U.
,
Michel
,
B.
,
Cesar
,
W.
,
Leblebici
,
Y.
,
Wunderle
,
B.
, and
Reichl
,
H.
,
2010
, “
Heat Removal Performance Scaling of Interlayer Cooled Chip Stacks
,” 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, June 2–5. 10.1109/ITHERM.2010.5501254
14.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2013
, “
Two-Phase Heat Transfer and High-Speed Visualization of Refrigerant Flows in 100 × 100 μm2 Silicon Multi-Microchannels
,”
Int. J. Refrig.
,
36
(2), pp.
402
413
.10.1016/j.ijrefrig.2012.11.014
15.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2013
, “
Two-Phase Flow Operational Maps for Multi-Microchannel Evaporators
,”
Int. J. Heat Fluid Flow
,
42
, pp.
176
189
.10.1016/j.ijheatfluidflow.2013.03.006
16.
Olivier
,
J. A.
,
Marcinichen
,
J. B.
,
Bruch
,
A.
, and
Thome
,
J. R.
,
2011
, “
Green Cooling of High Performance Micro Processors: Parametric Study Between Flow Boiling and Water Cooling
,”
J. Therm. Sci. Eng. Appl.
,
3
(
4
), p.
041003
.10.1115/1.4004435
17.
Tavman
,
I. H.
,
2004
, “
Thermal Conductivity of Particle Reinforced Polymer Composites
,”
Nanoengineered Nanofibrous Materials
,
Kluwer Academic Publishers
,
Netherlands
, pp.
451
459
.
18.
Thome
,
J. R.
,
Dupont
, V
.
, and
Jacobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels. Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(14–16), pp.
3375
3385
.10.1016/j.ijheatmasstransfer.2004.01.006
19.
Cioncolini
,
A.
, and
Thome
,
J. R.
,
2011
, “
Algebraic Turbulence Modeling in Adiabatic and Evaporating Annular Two-Phase Flow
,”
Int. J. Heat Fluid Flow
,
32
(4), pp.
805
817
.10.1016/j.ijheatfluidflow.2011.05.006
20.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow: Part 1—Two-Phase Flow Patterns and Film Thickness Measurements
,”
Exp. Therm. Fluid Sci.
,
35
(1), pp.
37
47
.10.1016/j.expthermflusci.2010.08.004
21.
Cioncolini
,
A.
,
Thome
,
J. R.
, and
Lombardi
,
C.
,
2009
, “
Unified Macro-to-Microscale Method to Predict Two-Phase Frictional Pressure Drops of Annular Flows
,”
Int. J. Multiphase Flow
,
35
(12), pp.
1138
1148
.10.1016/j.ijmultiphaseflow.2009.07.005
22.
Costa-Patry
,
E.
,
Olivier
,
J. A.
,
Nichita
,
B. A.
,
Michel
,
B.
, and
Thome
,
J. R.
,
2011
, “
Two-Phase Flow of Refrigerants in 85 μm-Wide Multi-Microchannels: Part I—Pressure Drop
,”
Int. J. Heat Fluid Flow
,
32
(
2
), pp.
451
463
.10.1016/j.ijheatfluidflow.2011.01.005
23.
Costa-Patry
,
E.
,
Olivier
,
J. A.
, and
Thome
,
J. R.
,
2012
, “
Heat Transfer Characteristics in a Copper Micro-Evaporator and Flow Pattern-Based Prediction Method for Flow Boiling in Microchannels
,”
Front. Heat Mass Transfer
,
3
(1), p.
013002
.10.5098/hmt.v3.1.3002
24.
Idelchik
,
I. E.
,
2005
,
Handbook of Hydraulic Resistance
, 3rd ed.,
Jaico
,
Mumbai
.
25.
Costa-Patry
,
E.
,
2011
, “
Cooling High Heat Flux Micro-Electronic Systems Using Refrigerants in High Aspect Ratio Multi-Microchannel Evaporators
,” Doctoral thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
26.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow: Part 2—Flow Boiling Heat Transfer and Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
35
(6), pp.
873
886
.10.1016/j.expthermflusci.2010.12.003
27.
Wojtan
,
L.
,
Revellin
R.
, and
Thome
J. R.
,
2006
Investigation of Saturated Critical Heat Flux in a Single Uniformly Heated Microchannel
,”
Exp. Therm. Fluid Sci.
,
30
(8), pp.
765
774
.10.1016/j.expthermflusci.2006.03.006
28.
Katto
,
Y.
, and
Ohno
,
H.
,
1984
, “
An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
9
), pp.
1641
1648
.10.1016/0017-9310(84)90276-X
29.
Agostini
,
B.
,
Thome
,
J.
,
Fabbri
,
M.
,
Michel
,
B.
,
Caimi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part I: Heat Transfer Characteristics of Refrigerant R236fa
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5400
5414
.10.1016/j.ijheatmasstransfer.2008.03.006
30.
Agostini
,
B.
,
Thome
,
J.
,
Fabbri
,
M.
,
Michel
,
B.
,
Caimi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part II: Heat Transfer Characteristics of Refrigerant R245fa
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5415
5425
.10.1016/j.ijheatmasstransfer.2008.03.007
31.
Agostini
,
B.
,
Revellin
,
R.
,
Thome
,
J.
,
Fabbri
,
M.
,
Michel
,
B.
,
Caimi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part III: Saturated Critical Heat Flux of R236fa and Two-Phase Pressure Drops
,”
Int. J. Heat Mass Transfer
,
51
(
21–22
), pp.
5426
5442
.10.1016/j.ijheatmasstransfer.2008.03.005
You do not currently have access to this content.