Dimple and protrusion play important roles in the heat transfer enhancement and flow characteristic in cooling channels, which widely employed within electronic cooling systems. Non-Newtonian fluid has significant differences with Newtonian fluid, such as water, in fluid characteristic. In this study, an experiment on the viscosity of three different kinds of non-Newtonian fluids, i.e., xanthan gum solution, Carbopol 934 solution, polyacrylamide solution, was first accomplished to acquire the viscosity with different mass fractions. Then, experimental measurements on heat transfer and friction characteristics of non-Newtonian fluid in a rectangular channel with dimples and protrusions were conducted. The overall Nusselt numbers (Nu) and Fanning friction factors at different dimple/protrusion structures were obtained with various inlet flow rates and mass fractions. The results show that only xanthan gum solution has the significant shear thinning effect within the concentration range of this study, and the dimples/protrusions both have great effect on the heat transfer enhancement in the rectangular channel, and that the heat transfer of the case with the protrusions and crossing arrangement can be further enhanced with the higher Nu when compared to the case with the dimples and aligned arrangement. Moreover, an increase in Nu with the higher non-Newtonian fluid mass fraction is observed.

References

1.
Arik
,
M.
, and
Bunker
,
R. S.
,
2006
, “
Electronics Packaging Cooling: Technologies From Gas Turbine Engine Cooling
,”
ASME J. Electron. Packag.
,
128
, pp.
215
225
.10.1115/1.2229219
2.
Böhme
,
G.
,
1987
,
Non-Newtonian Fluid Mechanics
,
Elsevier Science & Technology
, Amsterdam, Netherlands, Chap. 2.
3.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2006
, “
Steady Flow of Power-Law Fluids Across a Circular Cylinder
,”
Can. J. Chem. Eng.
,
84
, pp.
406
421
.10.1002/cjce.5450840402
4.
Acrivos
,
A.
,
Shah
,
M. J.
, and
Petersen
,
E. E.
,
1965
, “
On the Solution of the Two-Dimensional Boundary-Layer Flow Equations for a Non-Newtonian Power Law Fluid
,”
Chem. Eng. Sci.
,
20
, pp.
101
105
.10.1016/0009-2509(65)85003-5
5.
Sharma
,
K. K.
, and
Adelman
,
M.
,
1969
, “
Experimental Study of Natural Convection Heat Transfer From a Vertical Plate in a Non-Newtonian Fluid
,”
Can. J. Chem. Eng.
,
47
, pp.
553
555
.10.1002/cjce.5450470613
6.
Silva
,
C.
,
Marotta
,
E.
, and
Fletcher
,
L.
, “
Flow Structure and Enhanced Heat Transfer in Channel Flow With Dimpled Surfaces: Application to Heat Sinks in Microelectronic Cooling
,”
ASME J. Electron. Packag.
,
129
, pp.
157
166
.10.1115/1.2721087
7.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2007
, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
ASME J. Electron. Packag.
,
129
, pp.
63
70
.10.1115/1.2429711
8.
Small
,
E.
,
Sadeghipour
,
S. M.
, and
Asheghi
,
M.
,
2006
, “
Heat Sinks With Enhanced Heat Transfer Capability for Electronic Cooling Applications
,”
ASME J. Electron. Packag.
,
128
, pp.
285
290
.10.1115/1.2229230
9.
Xie
,
G. N.
,
Sunden
,
B.
, and
Zhang
,
W. H.
,
2011
, “
Comparisons of Pins/Dimples/Protrusions Cooling Concepts for an Internal Blade Tip-Wall at High Reynolds Numbers
,”
ASME J. Heat Transfer
,
133
(6), p.
061902
.10.1115/1.4003558
10.
Kim
,
S.
,
Choi
,
E. Y.
, and
Kwak
,
J. S.
,
2012
, “
Effect of Channel Orientation on the Heat Transfer Coefficient in the Smooth and Dimpled Rotating Rectangular Channels
,”
ASME J. Heat Transfer
,
134
(6), p.
064504
.10.1115/1.4006013
11.
Chen
,
J.
,
Müller-Steinhagen
,
H.
, and
Duffy
,
G. G.
,
2001
, “
Heat Transfer Enhancement in Dimpled Tubes
,”
Appl. Therm. Eng.
,
21
, pp.
535
547
.10.1016/S1359-4311(00)00067-3
12.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmood
,
G. I.
, and
Hill
,
M. L.
,
2001
, “
Flow Structure Due to Dimple Depression on a Channel Surface
,”
Phys. Fluids
,
13
, pp.
3442
3451
.10.1063/1.1404139
13.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
,
2002
, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2011
2020
.10.1016/S0017-9310(01)00314-3
14.
Elyyan
,
M. A.
, and
Tafti
,
D. K.
,
2008
, “
Large Eddy Simulation Investigation of Flow and Heat Transfer in a Channel With Dimples and Protrusions
,”
ASME J. Turbomach.
,
130
(4), p.
041016
.10.1115/1.2812412
15.
Alshroof
,
O.
,
Reizes
,
J.
,
Timchenko
,
V.
, and
Leonardi
,
E.
,
2009
, “
Flow Structure and Heat Transfer Enhancement in Laminar Flow With Protrusion-Dimple Combinations in a Shallow Rectangular Channel
,” Proceedings of ASME Heat Transfer Summer Conference, San Francisco, CA, July 19-23,
ASME
Paper No. HT2009-88251. 10.1115/HT2009-88251
16.
Hwang
,
S. D.
,
Kown
,
H. G.
, and
Cho
,
H. H.
,
2010
, “
Local Heat Transfer and Thermal Performance on Periodically Dimple-Protrusion Patterned Walls for Compact Heat Exchangers
,”
Energy
,
35
, pp.
5357
5364
.10.1016/j.energy.2010.07.022
17.
Hwang
,
S. D.
,
Kown
,
H. G.
, and
Cho
,
H. H.
,
2008
, “
Heat Transfer With Dimple/Protrusion Arrays in a Rectangular Duct With a Low Reynolds Number Range
,”
Int. J. Heat Fluid Flow
,
29
, pp.
916
926
.10.1016/j.ijheatfluidflow.2008.01.004
18.
Rao
,
Y.
,
Wan
,
C. Y.
, and
Xu
,
Y. M.
,
2012
, “
An Experimental Study of Pressure Loss and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths
,”
Int. J. Heat Mass Transfer
,
55
, pp.
6723
6733
.10.1016/j.ijheatmasstransfer.2012.06.081
19.
Rao
,
Y.
,
Wan
,
C. Y.
, and
Zang
,
S. S.
,
2012
, “
An Experimental and Numerical Study of the Flow and Heat Transfer in Channels With Pin Fin-Dimple Combined Arrays of Different Configurations
,”
ASME J. Heat Transfer
,
134
(12), p.
121901
.10.1115/1.4006943
20.
Rao
,
Y.
,
Xu
,
Y. M.
, and
Wan
,
C. Y.
,
2012
, “
An Experimental and Numerical Study of Flow and Heat Transfer in Channels With Pin Fin-Dimple and Pin Fin Arrays
,”
Exp. Therm. Fluid Sci.
,
38
, pp.
237
247
.10.1016/j.expthermflusci.2011.12.012
21.
Rao
,
Y.
,
Xu
,
Y. M.
, and
Wan
,
C. Y.
,
2012
, “
A Numerical Study of the Flow and Heat Transfer in the Pin Fin-Dimple Channels With Various Dimple Depths
,”
ASME J. Heat Transfer
,
134
(7), p.
071902
.10.1115/1.4006098
22.
Afanasyev
,
V. N.
,
Chudnovsky
,
Y. P.
,
Leontiev
,
A. I.
, and
Roganov
,
P. S.
,
1993
, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
,
7
, pp.
1
8
.10.1016/0894-1777(93)90075-T
23.
Burgess
,
N.
, and
Ligrani
,
P.
,
2005
, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer
,
127
, pp.
839
847
.10.1115/1.1994880
24.
Moon
,
H.
,
O'Connell
,
T.
, and
Glezer
,
B.
,
2000
, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME J. Eng. Gas Turbines Power
,
122
, pp.
307
313
.10.1115/1.483208
25.
Xie
,
G. N.
,
Liu
,
J.
,
Ligrani
,
P. M.
, and
Zhang
W. H.
,
2013
, “
Numerical Predictions of Heat Transfer and Flow Structure in a Square Cross-Section Channel With Various Non-Spherical Indentation Dimples
,”
Numer. Heat Transfer, Part A
,
64
(
3
), pp.
187
215
.10.1080/10407782.2013.779485
26.
Peixinho
,
J.
,
Desaubry
,
C.
, and
Lebouche
,
M.
,
2008
, “
Heat Transfer of a Non-Newtonian Fluid (Carbopol Aqueous Solution) in Transitional Pipe Flow
,”
Int. J. Heat Mass Transfer
,
51
, pp.
198
209
.10.1016/j.ijheatmasstransfer.2007.04.012
27.
Pawar
,
S. S.
, and
Sunnapwar
,
V. K.
,
2013
, “
Experimental Studies on Heat Transfer to Newtonian and Non-Newtonian Fluids in Helical Coils With Laminar and Turbulent Flow
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
792
804
.10.1016/j.expthermflusci.2012.09.024
28.
Zhang
,
G. G.
,
Zhang
,
M. Y.
, and
Yang
,
W. Y.
,
2007
, “
Drag Reduction in Turbulent Pipe Flows of Aqueous Xanthan Gum Solutions
,”
J. Xi’an Jiaotong Univ.
,
41
, pp.
1092
1095
(in Chinese). 10.7652/xjtuxb200709020
You do not currently have access to this content.