A model of mini heat sink with microchannels was developed to obtain homogeneous heat transfer capability. The channels are constructed in the form of eight triangular arrays based on a square substrate. Air is sucked from the periphery to the center of the substrate by a vacuum pump and heat transferred from the bottom surface of substrate can be removed by air flowing through channels. Corresponding to the given heat transfer power and the target temperature of substrate, the relationship among length, width and depth of channel was analytically established. By numerical simulation, local pressure drops at the joint of channels and air duct are first obtained and then the dimensions of each channel in a triangular array can be determined one by one. The investigation reveals that the widths of channels will vary with their depths, lengths and pressure differences between two ends. Since all channels are required for the same cooling power, the homogeneous heat transfer of heat sink can be realized. By assembling a certain number of heat sink units, the area of dissipation of heat sink can be enlarged and contoured to fit close to heating surface.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(5), pp.
126
129
.10.1109/EDL.1981.25367
2.
Alessandro
,
B.
,
Musi
,
B. B.
, and
Spiga
,
M. C.
,
2006
, “
Performance of a Polymeric Heat Sink With Circular Microchannels
,”
Appl. Therm. Eng.
,
26
(8–9), pp.
787
794
.10.1016/j.applthermaleng.2005.10.015
3.
Chen
,
Y. P.
,
Zhang
,
C. B.
,
Shi
,
M. H.
, and
Wu
,
J. F.
,
2009
, “
Three-Dimensional Numerical Simulation of Heat and Fluid Flow in Noncircular Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
36
(9), pp.
917
920
.10.1016/j.icheatmasstransfer.2009.06.004
4.
Xie
G. N.
,
Liu
J.
,
Liu
Y. Q.
,
Sunden
B.
, and
Zhang
W. H.
,
2013
, “
Comparative Study of Thermal Performance of Longitudinal and Transversal-Wavy Microchannel Heat Sinks for Electronic Cooling
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021008
.10.1115/1.4023530
5.
Dede Ercan
M.
,
2012
, “
Optimization and Design of a Multipass Branching Microchannel Heat Sink for Electronics Cooling
,”
ASME J. Electron. Packag.
,
134
(
4
), p.
041001
.10.1115/1.4007159
6.
Türkakar
,
G.
, and
Okutucu-Özyurt
,
T.
,
2012
, “
Dimensional Optimization of Microchannel Heat Sinks With Multiple Heat Sources
,”
Int. J. Therm. Sci.
,
62
, pp.
85
92
.10.1016/j.ijthermalsci.2011.12.015
7.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
,
2002
, “
Numerical Optimization of the Thermal Performance of a Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(13), pp.
2823
2827
.10.1016/S0017-9310(02)00006-6
8.
Xie
G. N.
,
Chen
Z. Y.
,
Sunden
B.
, and
Zhang
W. H.
,
2013
, “
Numerical Analysis of Flow and Thermal Performance of Liquid-Cooling Microchannel Heat Sinks With Bifurcation
,”
Numer. Heat Transfer, Part A
,
64
(11), pp.
902
919
.10.1080/10407782.2013.807689
9.
Xia
,
G. D.
,
Chai
,
L.
,
Wang
,
H. Y.
,
Zhou
,
M. Z.
, and
Cui
,
Z. Z.
,
2011
, “
Optimum Thermal Design of Microchannel Heat Sink With Triangular Treentran Cavities
,”
Appl. Therm. Eng.
,
31
(6–7), pp.
1208
1219
.10.1016/j.applthermaleng.2010.12.022
10.
Xie
G. N.
,
Liu
J.
,
Zhang
W. H.
, and
Sunden
B.
,
2012
, “
Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel Heat Sink for Chip Cooling
,”
ASME J. Electron. Packag.
,
34
(
4
), p.
041010
.10.1115/1.4023035
11.
Kou
,
H. S.
,
Lee
,
J. J.
, and
Chen
,
C. W.
,
2008
, “
Optimum Thermal Performance of Microchannel Heat Sink by Adjusting Channel Width and Height
,”
Int. Commun. Heat Mass Transfer
,
35
(5), pp.
577
582
.10.1016/j.icheatmasstransfer.2007.12.002
12.
Kosar
,
A
.,
2010
, “
Effect of Substrate Thickness and Material on Heat Transfer in Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
49
(4), pp.
635
642
.10.1016/j.ijthermalsci.2009.11.004
13.
Vafai
,
K.
, and
Khaled
,
A. R. A.
,
2005
, “
Analysis of Flexible Microchannel Heat Sink Systems
,”
Int. J. Heat Mass Transfer
,
48
(9), pp.
1739
1746
.10.1016/j.ijheatmasstransfer.2004.11.020
14.
Lee
,
Y.-J.
,
Lee
,
P.-S.
, and
Chou
,
S.-K.
,
2010
, “
Experimental Investigation of Silicon-Based Oblique Finned Microchannel Heat Sinks
,”
14th International Heat Transfer Conference (IHTC14)
, Washington, DC, USA, August 8–13,
ASME
Paper No. IHTC14-23413, pp.
283
291
.10.1115/IHTC14-23413
15.
Tsai
,
T. H.
, and
Chein
,
R. Y.
,
2007
, “
Performance Analysis of Nanofluid-Cooled Microchannel Heat Sinks
,”
Int. J. Heat Fluid Flow
,
28
(5), pp.
1013
1026
.10.1016/j.ijheatfluidflow.2007.01.007
16.
Jang
,
S. P.
, and
Choi Stephen
,
U. S.
,
2006
, “
Cooling Performance of a Microchannel Heat Sink With Nanofluids
,”
Appl. Therm. Eng.
,
26
(17–18), pp.
2457
2463
.10.1016/j.applthermaleng.2006.02.036
17.
Seyf
,
H. R.
, and
Nikaaein
,
B.
,
2012
, “
Analysis of Brownian Motion and Particle Size Effects on the Thermal Behavior and Cooling Performance of Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
58
, pp.
36
44
.10.1016/j.ijthermalsci.2012.02.022
18.
Kuznetsov
,
V. V.
, and
Shamirzaev
,
A. S.
,
2012
, “
Flow Boiling Heat Transfer of Water in Microchannel Heat Sink
,”
J. Eng. Thermophys.
,
21
(1), pp.
28
35
.10.1134/S1810232812010031
19.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
,
Cummins
,
G.
,
Kenning
,
D. B. R.
, and
Karayiannis
,
T. G.
,
2011
, “
Experimental Investigation of Non-Uniform Heating Effect on Flow Boiling Instabilities in a Microchannel-Based Heat Sink
,”
Int. J. Therm. Sci.
,
50
(3), pp.
309
324
.10.1016/j.ijthermalsci.2010.08.006
20.
Morini
,
G. L.
,
2000
, “
Analytical Determination of the Temperature Distribution and Nusselt Numbers in Rectangular Ducts With Constant Axial Heat Flux
,”
Int. J. Heat Mass Transfer
,
43
(5), pp.
741
755
.10.1016/S0017-9310(99)00188-X
21.
Tunc
,
G.
, and
Bayazitoglo
,
Y.
,
2002
, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(4), pp.
765
773
.10.1016/S0017-9310(01)00201-0
22.
van Male
,
P.
,
de Croon
,
M. H. J. M.
,
Tiggelaar
,
R. M.
,
van den Berg
,
A.
, and
Schouten
,
J. C.
,
2004
, “
Heat and Mass Transfer in a Square Microchannel With Asymmetric Heating
,”
Int. J. Heat Mass Transfer
,
47
(1), pp.
87
99
.10.1016/S0017-9310(03)00401-0
23.
Kuddusi
,
L.
,
2007
, “
Prediction of Temperature Distribution and Nusselt Number in Rectangular Microchannels at Wall Slip Condition for All Versions of Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
46
(10), pp.
998
1010
.10.1016/j.ijthermalsci.2006.12.006
24.
Deng
,
B. Q.
,
2010
, “
An Improved Porous Medium Model for Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
30
(16), pp.
2512
2517
.10.1016/j.applthermaleng.2010.06.025
25.
Khan
,
W. A.
, and
Yovanovich
,
M. M.
,
2007
, “
Analytical Modeling of Fluid Flow and Heat Transfer In Micro/Nano-Channel Heat Sinks
,”
ASME InterPACK Conference (InterPACK'07)
, Vancouver, BC, Canada, July 8–12,
ASME
Paper No. IPACK2007-33636, pp.
199
209
.10.1115/IPACK2007-33636
26.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
,
1972
,
Analysis of Heat and Mass Transfer
,
McGraw-Hill
,
New York
, Chap. 11.
27.
Xiao
,
R.
,
Xin
,
M. D.
, and
Zhu
,
X.
,
2001
, “
Analysis of Gaseous Slip Flow and Heat Transfer in Micro Rectangular Channels
,”
J. Chongqing Univ. (Natural Science Edition)
,
24
(
1
), pp.
99
103
(in Chinese).
28.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2005
, “
Fluid Flow Around and Heat Transfer From Elliptical Cylinders: Analytical Approach
,”
J. Thermophys. Heat Transfer
,
19
(
2
), pp.
178
185
.10.2514/1.10456
You do not currently have access to this content.