The thermal characteristics of a laboratory pin-fin microchannel heat sink were empirically obtained for heat flux, q″, in the range of 30–170 W/cm2, mass flux, m, in the range of 230–380 kg/m2 s, and an exit vapor quality, xout, from 0.2 to 0.75. Refrigerant R 134a (HFC-134a) was chosen as the working fluid. The heat sink was a pin-fin microchannel module installed in open flow loop. Deviation from the measured average temperatures was 1.5 °C at q = 30 W/cm2, and 2.0 °C at q = 170 W/cm2. These results indicate that use of pin-fin microchannel heat sink enables keeping an electronic device near uniform temperature under steady state and transient conditions. The heat transfer coefficient varied significantly with refrigerant quality and showed a peak at an exit vapor quality of 0.55 in all the experiments. At relatively low heat fluxes and vapor qualities, the heat transfer coefficient increased with vapor quality. At high heat fluxes and vapor qualities, the heat transfer coefficient decreased with vapor quality. A noteworthy feature of the present data is the larger magnitude of the transient heat transfer coefficients compared to values obtained under steady state conditions. The results of transient boiling were compared with those for steady state conditions. In contrast to the more common techniques, the low cost technique, based on open flow loop was developed to promote cooling using micropin fin sinks. Results of this experimental study may be used for designing the cooling high power laser and rocket-born electronic devices.

References

1.
Workman
,
G. O.
,
Fossum
,
J. G.
,
Krishnan
,
S.
, and
Petella
,
M. M.
,
1998
, “
Physical Modeling of Temperature Dependencies of SOI CMOS Devices and Circuits Including Self-Heating
,”
IEEE Trans. Electron Dev.
,
45
(
1
), pp.
125
133
.10.1109/16.658822
2.
Bohr
,
M. T.
1995
, “
Interconnected Scaling—The Real Limiter to High Performance ULSI
,”
IEEE International Electronic Device Meeting
(
IEDM ’95
), Washington, DC, December 10–13, pp.
241
244
.10.1109/IEDM.1995.499187
3.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
,
2005
, “
On the Nature of Critical Heat Flux in Microchannels
,”
ASME J. Heat Transfer
,
127
(1), pp.
101
107
.10.1115/1.1839587
4.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A. E.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
(9–10), pp.
2267
2281
.10.1016/j.ijheatmasstransfer.2007.08.027
5.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Measurement and Prediction of Pressure Drop in Two Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
(
15
), pp.
2737
2753
.10.1016/S0017-9310(03)00044-9
6.
Zhang
,
L.
,
Wang
,
E. N.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
,
2005
, “
Phase Change Phenomena in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
8
), pp.
1572
1582
.10.1016/j.ijheatmasstransfer.2004.09.048
7.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
,
2002
, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
,
45
(
16
), pp.
3275
3286
.10.1016/S0017-9310(02)00048-0
8.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
,
2003
, “
Two-Phase Flow Patterns in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
,
29
(
3
), pp.
341
360
.10.1016/S0301-9322(03)00002-8
9.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2005
, “
Explosive Boiling of Water in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
,
31
(
4
), pp.
371
392
.10.1016/j.ijmultiphaseflow.2005.01.003
10.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
,
2006
, “
Periodic Boiling in Parallel Micro-Channels at Low Vapor Quality
,”
Int. J. Multiphase Flow
,
32
(10–11), pp.
1141
1159
.10.1016/j.ijmultiphaseflow.2006.06.005
11.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
Liquid/Two-Phase/Vapor Alternating Flow During Boiling in Microchannels at High Heat Flux
,”
Int. Commun. Heat Mass Transfer
,
30
(
3
), pp.
295
302
.10.1016/S0735-1933(03)00048-4
12.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2603
2614
.10.1016/S0017-9310(03)00039-5
13.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2004
, “
Boiling Instability in Parallel Silicon Microchannels at Different Heat Flux
,”
Int. J. Heat Mass Transfer
,
47
(17–18), pp.
3631
3641
.10.1016/j.ijheatmasstransfer.2004.04.012
14.
Wang
,
G.
,
Cheng
,
P.
, and
Wu
,
H.
,
2007
, “
Unstable and Stable Flow Boiling in Parallel Microchannels and in a Single Microchannel
,”
Int. J. Heat Mass Transfer
,
50
(21–22), pp.
4297
4310
.10.1016/j.ijheatmasstransfer.2007.01.033
15.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(4), pp.
389
396
.10.1115/1.2165208
16.
Kosar
,
A.
,
Kuo
,
C.-J.
, and
Peles
,
Y.
,
2006
, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
,
128
(3), pp.
251
260
.10.1115/1.2150837
17.
Kuo
,
C. J.
, and
Peles
,
Y.
,
2009
, “
Pressure Effects on Flow Boiling Instabilities in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(1–2), pp.
271
280
.10.1016/j.ijheatmasstransfer.2008.06.015
18.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(4), pp.
389
396
.10.1115/1.2165208
19.
Park
,
J. E.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2009
, “
Effect of Inlet Orifice on Saturated CHF and Flow Visualization in Multi-Microchannel Heat Sinks
,”
25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM 2009
), San Jose, CA, March 15–19.10.1109/STHERM.2009.4810735
20.
Xu
,
J.
,
Liu
,
G.
,
Zhang
,
W.
,
Li
,
Q.
, and
Wang
,
B.
,
2009
, “
Seed Bubbles Stabilize Flow and Heat Transfer in Parallel Microchannels
,”
Int. J. Multiphase Flow
,
35
(8), pp.
773
790
.10.1016/j.ijmultiphaseflow.2009.03.008
21.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2008
, “
Modeling of Cylindrical Pin-Fin Heat Sinks for Electronic Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
3
), pp.
536
545
.10.1109/TCAPT.2008.2002554
22.
Khan
,
W. A.
, and
Yovanovich
,
M. M.
,
2007
, “
Optimization of Pin-Fin Heat Sinks in Bypass Flow Using Entropy Generation Minimization Method
,” ASME 2007 InterPACK Conference, Vancouver, BC, Canada, July 8–12,
ASME
Paper No. IPACK2007-33983, pp. 653–661.10.1115/IPACK2007-33983
23.
Koz
,
M.
, and
Kosar
,
A.
,
2010
, “
Parameter Optimization of a Micro-Heat Sink With Circular Pin Fins
,”
ASME 8th Conference on Nanochannels, Microchannels and Minichannels
, Montreal, Canada, August 1–5,
ASME
Paper No. FEDSM-ICNMM2010-30473, pp. 531–539.10.1115/FEDSM-ICNMM2010-30473
24.
Koz
,
M.
, and
Kosar
,
A.
,
2010
, “
The Effect of Micro-Pin Shape on the Heat Transfer Performance of Micro Pin-Fin Sinks
,” ASME International Mechanical Engineering Congress and Exposition (IMECE 2010), Vancouver, BC, Canada, November 12–18,
ASME
Paper No. IMECE2010-38581, pp. 387–393.10.1115/IMECE2010-38581
25.
Bogojevic
,
D.
,
Sefiane
,
K.
,
Walton
,
A. J.
,
Lin
,
H.
, and
Cummins
,
G.
,
2009
, “
Two-Phase Flow Instabilities in a Silicon Microchannels Heat Sink
,”
Int. J. Heat Fluid Flow
,
30
(5), pp.
854
867
.10.1016/j.ijheatfluidflow.2009.03.013
26.
Kandlikar
,
S. G.
, and
Balasubramanian
,
P.
,
2004
, “
Effect of Gravitational Orientation on Flow Boiling of Water in 1054 × 197 µm Parallel Minichannels
,”
ASME 2nd International Conference on Microchannels and Minichannels
, Rochester, NY, June 17–19,
ASME
Paper No. ICMM2004-2379, pp.
539
550
.10.1115/ICMM2004-2379
27.
Brutin
,
D.
,
Topin
,
F.
, and
Tadrist
,
L.
,
2003
, “
Experimental Study of Unsteady Convective Boiling in Heated Minichannels
,”
Int. J. Heat Mass Transfer
,
46
(16), pp.
2957
2965
.10.1016/S0017-9310(03)00093-0
28.
Xu
,
J.
,
Shen
,
S.
,
Gan
,
Y.
,
Li
,
Y.
,
Zhang
,
W.
, and
Su
,
Q.
,
2005
, “
Transient Flow Pattern Based Microscale Boiling Heat Transfer Mechanisms
,”
J. Micromech. Microeng.
,
15
(6), pp.
1344
1361
.10.1088/0960-1317/15/6/028
29.
Diaz
,
C. M.
, and
Schmidt
,
J.
,
2007
, “
Experimental Investigation of Transient Boiling Heat Transfer in Microchannels
,”
Int. J. Heat Fluid Flow
,
28
(1), pp.
95
102
.10.1016/j.ijheatfluidflow.2006.05.008
30.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
,
2000
, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Micro-Channels
,”
ASME International Mechanical Engineering Congress and Exposition
, Orlando, FL, November 5–10.
31.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
,
2001
, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(1), pp.
16
23
.10.1109/6144.910797
32.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
2002
, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
,
45
(16), pp.
3275
3286
.10.1016/S0017-9310(02)00048-0
33.
Lee
,
J.
, and
Mudawar
,
I.
,
2008
, “
Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase Micro-Channel Heat Sinks—Part 1: Experimental Methods and Flow Visualization Results
,”
Int. J. Heat Mass Transfer
,
51
(17–18), pp.
4315
4326
.10.1016/j.ijheatmasstransfer.2008.02.012
34.
Agostini
,
B.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Boiling in Silicon Multi-Microchannels—Part 1: Heat Transfer Characteristics of Refrigerant R236fa
,”
Int. J. Heat Mass Transfer
,
51
(21–22), pp.
5400
5414
.10.1016/j.ijheatmasstransfer.2008.03.006
35.
Bertsch
,
S. S.
,
Groll.
,
E. A.
, and
Garimella
,
S. V.
,
2008
, “
Refrigerant Flow Boiling Heat Transfer in Parallel Microchannels as a Function of Local Vapor Quality
,”
Int. J. Heat Mass Transfer
,
51
(19–20), pp.
4775
4787
.10.1016/j.ijheatmasstransfer.2008.01.026
36.
Kosar
,
A.
, and
Peles
,
Y.
,
2006
, “
Thermal-Hydraulic Performance of MEMS-Based Pin-Fin Heat Sink
,”
ASME J. Heat Transfer
,
128
(2), pp.
121
131
.10.1115/1.2137760
37.
Kosar
,
A.
, and
Peles
,
Y.
,
2006
, “
Convective Flow of Refrigerant (R-123) Across a Bank of Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
49
(17–18), pp.
3142
3155
.10.1016/j.ijheatmasstransfer.2006.02.013
38.
Qu
,
W.
, and
Siu-Ho
,
A.
,
2008
, “
Liquid Single-Phase Flow in an Array of Micro-Pin Fins—Part I: Heat Transfer Characteristics
,”
ASME J. Heat Transfer
,
130
(12), p.
122402
.10.1115/1.2970080
39.
“Thermodynamic Properties of HFC-134a,” 2004, DuPont Fluorochemicals, Wilmington, DE.
40.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
(15), pp.
2755
2771
.10.1016/S0017-9310(03)00041-3
41.
“Guide to the Expression of Uncertainty of Measurement,” 1995, International Organization for Standardization, Geneva.
42.
Lee
,
J.
, and
Mudawar
,
I.
,
2005
, “
Two-Phase Flow in High-Heat Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II—Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
48
(5), pp.
941
955
.10.1016/j.ijheatmasstransfer.2004.09.019
43.
Krebs
,
D.
,
Narayanan
,
V.
,
Laburdy
,
J.
, and
Pence
,
D.
,
2010
, “
Spatially Resolved Wall Temperature Measurements During Flow Boiling in Microchannels
,”
Exp. Therm. Fluid Sci.
,
34
(4), pp.
435
445
.10.1016/j.expthermflusci.2009.05.005
You do not currently have access to this content.