To promote heat dissipation in power electronics, we investigated the thermal conduction performance of Sn-Bi solder paste between two Cu plates. We measured the thermal resistance of Sn-Bi solder paste used as thermal interface material (TIM) by laser flash technique, and a thermal resistance less than 5 mm2 K/W was achieved for the Sn-Bi TIM. The Sn-Bi solder also showed a good reliability in terms of thermal resistance after thermal cycling, indicating that it can be a promising candidate for the TIM used for power electronics applications. In addition, we estimated the contact thermal resistance at the interface between the Sn-Bi solder and the Cu plate with the assistance of scanning acoustic microscopy. The experimental data showed that Sn-Bi solder paste could be a promising adhesive material used to attach power modules especially with a large size on the heat sink.

References

References
1.
Sarvar
,
F.
,
Whalley
,
D. C.
, and
Conway
,
P. P.
,
2006
, “
Thermal Interface Materials—A Review of the State of the Art
,”
First Electronic System Integration Technology Conference
, Dresden, Germany, September 5–7, pp.
1292
1302
.10.1109/ESTC.2006.280178
2.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.10.1109/JPROC.2006.879796
3.
Otiaba
,
K. C.
,
Ekere
,
N. N.
,
Bhatti
,
R. S.
,
Mallik
,
S.
,
Alam
,
M. O.
, and
Amalu
,
E. H.
,
2011
, “
Thermal Interface Materials for Automotive Electronic Control Unit: Trends, Technology and R&D Challenges
,”
Microelectron. Reliab.
,
51
(
12
), pp.
2031
2043
.10.1016/j.microrel.2011.05.001
4.
McNamara
,
A. J.
,
Joshi
,
Y.
, and
Zhang
,
Z. M.
,
2012
, “
Characterization of Nanostructured Thermal Interface Materials—A Review
,”
Int. J. Therm. Sci.
,
62
(
SI
), pp.
2
11
.10.1016/j.ijthermalsci.2011.10.014
5.
Chung
,
D. D. L.
,
2001
, “
Thermal Interface Materials
,”
J. Mater. Eng. Perform.
,
10
(
1
), pp.
56
59
.10.1361/105994901770345358
6.
Narumanchi
,
S.
,
Mihalic
,
M.
,
Kelly
,
K.
, and
Eesley
,
G.
,
2008
, “
Thermal Interface Materials for Power Electronics Applications
,”
11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2008
), Orlando, FL, May 28–31, pp.
395
404
.10.1109/ITHERM.2008.4544297
7.
Yu
,
H.
,
Li
,
L.
, and
Zhang
,
Y.
,
2012
, “
Silver Nanoparticle-Based Thermal Interface Materials With Ultra-Low Thermal Resistance for Power Electronics Applications
,”
Scr. Mater.
,
66
(
11
), pp.
931
934
.10.1016/j.scriptamat.2012.02.037
8.
Yang
,
C.
,
Wong
,
C. P.
, and
Yuen
,
M. M. F.
,
2013
, “
Printed Electrically Conductive Composites: Conductive Filler Designs and Surface Engineering
,”
J. Mater. Chem. C
,
1
(
26
), pp.
4052
4069
.10.1039/c3tc00572k
9.
Chen
,
G.
,
Cao
,
Y.
,
Mei
,
Y.
,
Han
,
D.
, and
Lu
,
G. Q.
,
2012
, “
Pressure-Assisted Low-Temperature Sintering of Nanosilver Paste for 5 × 5-mm2 Chip Attachment
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
2
(
11
), pp.
1759
1767
.10.1109/TCPMT.2012.2214481
10.
Chen
,
G.
,
Han
,
D.
,
Mei
,
Y. H.
,
Cao
,
X.
,
Wang
,
T.
,
Chen
,
X.
, and
Lu
,
G. Q.
,
2012
, “
Transient Thermal Performance of IGBT Power Modules Attached by Low-Temperature Sintered Nanosilver
,”
IEEE Trans. Dev. Mater. Reliab.
,
12
(
1
), pp.
124
132
.10.1109/TDMR.2011.2173573
11.
Yan
,
J.
,
Zou
,
G.
,
Wu
,
A. P.
,
Ren
,
J.
,
Yan
,
J.
,
Hu
,
A.
, and
Zhou
,
Y.
,
2012
, “
Pressureless Bonding Process Using Ag Nanoparticle Paste for Flexible Electronics Packaging
,”
Scr. Mater.
,
66
(
8
), pp.
582
585
.10.1016/j.scriptamat.2012.01.007
12.
Buttay
,
C.
,
Masson
,
A.
,
Li
,
J.
,
Johnson
,
M. C.
,
Lazar
,
M.
,
Raynaud
,
C.
, and
Morel
,
H.
,
2011
, “
Die Attach of Power Devices Using Silver Sintering-Bonding Process Optimization and Characterization
,”
IMAPS International Conference on High Temperature Electronics Network (HiTEN 2011)
, Oxford, UK, July 18–20, pp.
84
90
.
13.
Liang
,
Q.
,
Yao
,
X.
,
Wang
,
W.
,
Liu
,
Y.
, and
Wong
,
C. P.
,
2011
, “
A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials
,”
ACS Nano
,
5
(
3
), pp.
2392
2401
.10.1021/nn200181e
14.
Jagannadham
,
K.
,
2011
, “
Influence of Laser and Thermal Treatment on the Thermal Conductivity of In-Graphene Composites
,”
J. Appl. Phys.
,
110
(
9
), p.
094907
.10.1063/1.3662181
15.
Wang
,
H.
,
Feng
,
J. Y.
,
Hu
,
X. J.
, and
Ng
,
K. M.
,
2010
, “
Reducing Thermal Contact Resistance Using A Bilayer Aligned CNT Thermal Interface Material
,”
Chem. Eng. Sci.
,
65
(
3
), pp.
1101
1108
.10.1016/j.ces.2009.09.064
16.
Yu
,
A.
,
Ramesh
,
P.
,
Itkis
,
M. E.
,
Bekyarova
,
E.
, and
Haddon
,
R. C.
,
2007
, “
Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials
,”
J. Phys. Chem. C
,
111
(
21
), pp.
7565
7569
.10.1021/jp071761s
17.
Cross
,
R.
,
Cola
,
B. A.
,
Fisher
,
T.
,
Xu
,
X.
,
Gall
,
K.
, and
Graham
,
S.
,
2010
, “
A Metallization and Bonding Approach for High Performance Carbon Nanotube Thermal Interface Materials
,”
Nanotechnology
,
21
(
44
), p.
445705
.10.1088/0957-4484/21/44/445705
18.
Aoyagi
,
Y.
, and
Chung
,
D. D. L.
,
2008
, “
Antioxidant-Based Phase-Change Thermal Interface Materials With High Thermal Stability
,”
J. Electron. Mater.
,
37
(
4
), pp.
448
461
.10.1007/s11664-007-0376-1
19.
Yu
,
H.
,
Li
,
L.
,
Kido
,
T.
,
Xi
,
G.
,
Xu
,
G.
, and
Guo
,
F.
,
2012
, “
Thermal and Insulating Properties of Epoxy/Aluminum Nitride Composites Used for Thermal Interface Material
,”
J. Appl. Polym. Sci.
,
124
(
1
), pp.
669
677
.10.1002/app.35016
20.
Sahoo
,
N. G.
,
Rana
,
S.
,
Cho
,
J. W.
,
Li
,
L.
, and
Chan
,
S. H.
,
2010
, “
Polymer Nanocomposites Based on Functionalized Carbon Nanotubes
,”
Prog. Polym. Sci.
,
35
(
7
), pp.
837
867
.10.1016/j.progpolymsci.2010.03.002
21.
Terao
,
T.
,
Zhi
,
C.
,
Bando
,
Y.
,
Mitome
,
M.
,
Tang
,
C.
, and
Golberg
,
D.
,
2010
, “
Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement
,”
J. Phys. Chem. C
,
114
(
10
), pp.
4340
4344
.10.1021/jp911431f
22.
Deppisch
,
C.
,
Fitzgerald
,
T.
,
Raman
,
A.
,
Hua
,
F.
,
Zhang
,
C.
,
Liu
,
P.
, and
Miller
,
M.
,
2006
, “
The Material Optimization and Reliability Characterization of an Indium-Solder Thermal Interface Material for CPU Packaging
,”
JOM
,
58
(
6
), pp.
67
74
.10.1007/s11837-006-0186-6
23.
Chaowasakoo
,
T.
,
Ng
,
T. H.
,
Songninluck
,
J.
,
Stern
,
M. B.
, and
Ankireddi
,
S.
,
2009
, “
Indium Solder as A Thermal Interface Material Using Fluxless Bonding Technology
,” 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM 2009
), San Jose, CA, March 15–10, pp.
180
185
.10.1109/STHERM.2009.4810761
24.
Too
,
S. S.
,
Touzelbaev
,
M.
,
Khan
,
M.
,
Master
,
R.
,
Diep
,
J.
, and
Keok
,
K. H.
,
2009
, “
Indium Thermal Interface Material Development for Microprocessors
,” 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM 2009
), San Jose, CA, March 15–10, pp.
186
192
.10.1109/STHERM.2009.4810762
25.
Bai
,
J. G.
,
Zhang
,
Z. Z.
,
Lu
,
G.-Q.
, and
Hasselman
,
D. P. H.
,
2005
, “
Measurement of Solder/Copper Interfacial Thermal Resistance by the Flash Technique
,”
Int. J. Thermophys.
,
26
(
5
), pp.
1607
1615
.10.1007/s10765-005-8107-4
26.
Kirschman
,
R. K.
,
Sokolowski
,
W. M.
, and
Kolawa
,
E. A.
,
2001
, “
Die Attachment for −120 °C to 20 °C Thermal Cycling of Microelectronics for Future Mars Rovers—An Overview
,”
ASME J. Electron. Packag.
,
123
(
2
), pp.
105
111
.10.1115/1.1347996
27.
Van Heerden
,
D.
,
Rude
,
T.
,
Newson
,
J.
,
Knio
,
O.
,
Weihs
,
T. P.
, and
Gailus
,
D. W.
,
2004
, “
Thermal Behavior of A Soldered Cu–Si Interface
,” 20th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM 2004
), San Jose, CA, March 9–11, pp.
46
49
.10.1109/STHERM.2004.1291300
28.
Stinson-Bagby
,
K.
,
Huff
,
D.
,
Katsis
,
D.
,
Van Wyk
,
D.
, and
Lu
,
G. Q.
,
2004
, “
Thermal Performance and Microstructure of Lead Versus Lead-Free Solder Die Attach Interface in Power Device Packages
,”
2004 IEEE International Symposium on Electronics and the Environment
, Scottsdale, AZ, May 10–13, pp.
27
32
.10.1109/ISEE.2004.1299683
29.
Hu
,
X.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2004
, “
Thermal Characterization of Eutectic Alloy Thermal Interface Materials With Void-Like Inclusions
,” 20th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM 2004
), San Jose, CA, March 9–11, pp.
98
103
.10.1109/STHERM.2004.1291308
30.
Dutchak
,
Y. I.
,
Osipenko
,
V. P.
, and
Panasyuk
,
P. V.
,
1968
, “
Thermal Conductivity of Sn-Bi Alloys in the Solid and Liquid States
,”
Soviet Phys. J.
,
11
(
10
), pp.
145
147
.10.1007/BF00822489
31.
Chiu
,
C. P.
,
Maveety
,
J. G.
, and
Tran
,
Q. A.
,
2002
, “
Characterization of Solder Interfaces Using Laser Flash Metrology
,”
Microelectron. Reliab.
,
42
(
1
), pp.
93
100
.10.1016/S0026-2714(01)00129-9
32.
Chase
,
M. W.
,
1998
,
NIST—JANAF Thermochemical Tables
(Journal of Physical and Chemical Reference Data Monograph No. 9), 4th ed., American Chemical Society, Washington, DC.
33.
Hua
,
F.
,
Mei
,
Z.
, and
Glazer
,
J.
,
1998
, “
Eutectic Sn-Bi as An Alternative to Pb-Free Solders
,”
48th IEEE Electronic Components and Technology Conference
(
ECTC
), Seattle, WA, May 25–28, pp.
277
283
.10.1109/ECTC.1998.678706
34.
Ousten
,
J. P.
, and
Khatir
Z.
,
2011
, “
Investigations of Thermal Interfaces Aging Under Thermal Cycling Conditions for Power Electronics Applications
,”
Microelectron. Reliab.
,
51
(
9–11
), pp.
1830
1835
.10.1016/j.microrel.2011.07.066
35.
“ImageJ: Image Processing and Analysis in Java,” 2004, National Institutes of Health, Washington, DC, http://rsb.info.nih.gov/ij/
36.
Smith
,
J. H.
, and
Woodhouse
,
J.
,
2000
, “
The Tribology of Rosin
,”
J. Mech. Phys. Solids
,
48
(
8
), pp.
1633
1681
.10.1016/S0022-5096(99)00067-8
37.
Lemmon
,
E. W.
, and
Jacobsen
,
R. T.
,
2004
, “
Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air
,”
Int. J. Thermophys.
,
25
(
1
), pp.
21
69
.10.1023/B:IJOT.0000022327.04529.f3
38.
Pritchard
,
L. S.
,
Acarnley
,
P. P.
, and
Johnson
,
C. M.
,
2004
, “
Effective Thermal Conductivity of Porous Solder Layers
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
2
), pp.
259
267
.10.1109/TCAPT.2004.828584
39.
Fleischer
,
A. S.
,
Chang
,
L. H.
, and
Johnson
,
B. C.
,
2006
, “
The Effect of Die Attach Voiding on the Thermal Resistance of Chip Level Packages
,”
Microelectron. Reliab.
,
46
(
5–6
), pp.
794
804
.10.1016/j.microrel.2005.01.019
40.
Ciampolini
,
L.
,
Ciappa
,
M.
,
Malberti
,
P.
,
Regli
,
P.
, and
Fichtner
,
W.
,
1999
, “
Modelling Thermal Effects of Large Contiguous Voids in Solder Joints
,”
Microelectron. J.
,
30
(
11
), pp.
1115
1123
.10.1016/S0026-2692(99)00073-7
You do not currently have access to this content.