Thermal grease, as a thermal interface material (TIM), has been extensively applied in electronic packaging areas. Generally, thermal greases consist of highly thermally conductive solid fillers and matrix material that provides good surface wettability and compliance of the material during application. In this study, the room-temperature liquid metal (a gallium, indium and tin eutectic, also called Galinstan) was proposed as a new kind of liquid filler for making high performance TIMs with desired thermal and electrical behaviors. Through directly mixing and stirring in air, liquid metal micron-droplets were accidentally discovered capable to be homogeneously distributed and sealed in the matrix of methyl silicone oil. Along this way, four different volume ratios of the liquid metal poly (LMP) greases were fabricated. The thermal and electrical properties of the LMP greases were experimentally investigated, and the mechanisms were clarified by analyzing their surface morphologies. The experimental results indicate that the original highly electrically conductive liquid metal can be turned into a highly electrically resistive composite, by simply blending with methyl silicone oil. When the filler content comes up to 81.8 vol. %, the thermal conductivity, viscosity and volume resistivity read 5.27 W/(m · °C), 760 Pa · s and 1.07 × 107 Ω m, respectively. Furthermore, the LMP greases presented no obvious corrosion effect, compared with pure liquid metal. This study opens a new approach to flexibly modify the material behaviors of the room-temperature liquid metals. The resulted thermally conductive however highly electrically resistive LMP greases can be significant in a wide variety of electronic packaging applications.

References

References
1.
Zhang
,
K.
,
Chai
,
Y.
,
Yuen
,
M. M. F.
,
Xiao
,
D. G. W.
, and
Chan
,
P. C. H.
,
2008
, “
Carbon Nanotube Thermal Interface Material for High-Brightness Light-Emitting-Diode Cooling
,”
Nanotechnology
,
19
, p.
215706
.10.1088/0957-4484/19/21/215706
2.
Lee
,
Y. T.
,
Shanmugan
,
S.
, and
D.
Mutharasu
,
2013
, “
Thermal Resistance of CNTs-Based Thermal Interface Material for High Power Solid State Device Packages
,”
Appl. Phys. A
(online).10.1007/s00339-013-7676-5
3.
Sarvar
,
F.
,
Whalley
,
D. C.
, and
Conway
,
P. P.
,
2006
, “
Thermal Interface Materials—A Review of the State of the Art
,”
1st Electronics System Integration Technology Conference
(
ESTC 2006
), Dresden, Germany, September 5–7, pp.
1292
1302
.10.1109/ESTC.2006.280178
4.
Shahil
,
K. M. F.
, and
Balandin
,
A. A.
,
2012
, “
Graphene–Multilayer Graphene Nanocomposites as Highly Efficient Thermal Interface Materials
,”
Nano Lett.
,
12
, pp.
861
867
.10.1021/nl203906r
5.
Tian
,
X.
,
Itkis
,
M. E.
,
Bekyarova
,
E. B.
, and
Robert
,
C. H.
,
2013
, “
Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites
,”
Sci. Rep.
,
3
, p.
1710
.10.1038/srep01710
6.
Yu
,
H.
,
Li
,
L. L.
,
Kido
,
T.
,
Xi
,
G. N.
,
Xu
,
G. C.
, and
Guo
,
F.
,
2012
, “
Thermal and Insulating Properties of Epoxy/Aluminum Nitride Composites Used for Thermal Interface Material
,”
J. Appl. Polym. Sci.
,
124
, pp.
669
677
.10.1002/app.35016
7.
Yang
,
K.
, and
Gu
,
M.
,
2010
, “
Enhanced Thermal Conductivity of Epoxy Nanocomposites Filled With Hybrid Filler System of Triethylenetetramine-Functionalized Multi-Walled Carbon Nanotube/Silane-Modified Nano-Sized Silicon Carbide
,”
Compos. Part A
,
41
, pp.
215
221
.10.1016/j.compositesa.2009.10.019
8.
Choi
,
S.
,
Im
,
H.
, and
Kim
,
J.
,
2012
, “
Flexible and High Thermal Conductivity Thin Films Based on Polymer: Aminated Multi-Walled Carbon Nanotubes/Micro-Aluminum Nitride Hybrid Composites
,”
Compos. Part A
,
43
, pp.
1860
1868
.10.1016/j.compositesa.2012.06.009
9.
Lee
,
G. W.
,
Park
,
M.
,
Kim
,
J.
,
Lee
,
J. I.
, and
Yoon
,
H. G.
,
2006
, “
Enhanced Thermal Conductivity of Polymer Composites Filled With Hybrid Filler
,”
Compos. Part A
,
37
, pp.
727
734
.10.1016/j.compositesa.2005.07.006
10.
Chou
,
H. E.
,
Yang
,
S. R.
,
Wang
,
S. F.
,
Sung
,
J. C.
,
2010
, “
Thermal Conductivity of Diamond-Containing Grease
,”
ASME J. Electron. Packag.
,
132
, p.
041015
.10.1115/1.4003002
11.
Wu
,
X.
,
Y.
Wang
,
Xie
,
L.
,
Yu
,
J.
,
Liu
,
F.
, and
Jiang
,
P.
,
2013
, “
Thermal and Electrical Properties of Epoxy Composites at High Alumina Loadings and Various Temperatures
,”
Iran. Polym. J.
,
22
, pp.
61
73
.10.1007/s13726-012-0104-4
12.
Peng
,
W. Y.
,
Huang
,
X. Y.
,
Yu
,
J. H.
,
Jiang
,
P. K.
, and
Liu
,
W. H.
,
2010
, “
Electrical and Thermophysical Properties of Epoxy/Aluminum Nitride Nanocomposites: Effects of Nanoparticle Surface Modification
,”
Compos. Part A
,
41
, pp.
1201
1209
.10.1016/j.compositesa.2010.05.002
13.
Teng
,
C. C.
,
Ma
,
C. C. M.
,
Chiou
,
K. C.
, and
Lee
,
T. M.
,
2012
, “
Synergetic Effect of Thermal Conductive Properties of Epoxy Composites Containing Functionalized Multi-Walled Carbon Nanotubes and Aluminum Nitride
,”
Compos. Part B
,
43
, pp.
265
271
.10.1016/j.compositesb.2011.05.027
14.
Qian
,
W.
,
Gao
,
W.
, and
Xie
,
Z.
,
2003
, “
Highly Thermally Conductive Room-Temperature-Vulcanized Silicone Rubber and Silicone Grease
,”
J. Appl. Polym. Sci.
,
89
, pp.
2397
2399
.10.1002/app.12363
15.
Sun Lee
,
W.
, and
Yu
,
J.
,
2005
, “
Comparative Study of Thermally Conductive Fillers in Underfill for the Electronic Components
,”
Diamond Relat. Mater.
,
14
, pp.
1647
1653
.10.1016/j.diamond.2005.05.008
16.
Gao
,
Y. X.
, and
Liu
,
J.
,
2012
, “
Gallium-Based Thermal Interface Material With High Compliance and Wettability
,”
Appl. Phys. A
,
107
, pp.
701
708
.10.1007/s00339-012-6887-5
17.
“Coollaboratory Liquid Pro,” 2013, Coollaboratory, Magdeburg, Germany,
http://www.coollaboratory.com/en/products/liquid-pro/, Accessed: December 25, 2013.
18.
Deng
,
Y. G.
, and
Liu
,
J.
,
2009
, “
Corrosion Development Between Liquid Gallium and Four Typical Metal Substrates Used in Chip Cooling Device
,”
Appl. Phys. A
,
95
, pp.
907
915
.10.1007/s00339-009-5098-1
19.
Prokhorenko
,
V. Y.
,
Roshchupkin
,
V. V.
,
Pokrasin
,
M. A.
,
Prokhorenko
,
S. V.
, and
Kotov
,
V. V.
,
2000
, “
Liquid Gallium: Potential Uses as a Heat-Transfer Agent
,”
High Temp.
,
38
, pp.
954
968
.10.1023/A:1004157827093
20.
Sivan
,
V.
,
Tang
,
S. Y.
,
O'Mullane
,
A. P.
,
Petersen
,
P.
,
Eshtiaghi
,
N.
,
Kalantar-zadeh
,
K.
, and
Mitchell
,
A.
,
2013
, “
Liquid Metal Marbles
,”
Adv. Funct. Mater.
,
23
, pp.
144
152
.10.1002/adfm.201200837
21.
Mikulić
,
D.
, and
Milovanović
,
B.
,
2010
, “
TCi System for Non-Destructive Determination of Thermal Properties of Materials
,”
10th European Conference on Non-Destructive Testing
, Moscow, Russia, June 7–11, Paper No. 1.5.11, pp.
1
10
.
22.
Wang
,
S.
,
Liang
,
R.
,
Wang
,
B.
, and
Zhang
,
C.
,
2009
, “
Dispersion and Thermal Conductivity of Carbon Nanotube Composites
,”
Carbon
,
47
, pp.
53
57
.10.1016/j.carbon.2008.08.024
23.
Chua
,
T. P.
,
Mariatti
,
M.
,
Azizan
,
A.
, and
Rashid
,
A. A.
,
2010
, “
Effects of Surface-Functionalized Multi-Walled Carbon Nanotubes on the Properties of Poly(Dimethyl Siloxane) Nanocomposites
,”
Compos. Sci. Technol.
,
70
, pp.
671
677
.10.1016/j.compscitech.2009.12.023
24.
Zhang
,
K.
,
Davis
,
M.
,
Qiu
,
J.
,
Hope-Weeks
,
L.
, and
Wang
,
S.
,
2012
, “
Thermoelectric Properties of Porous Multi-Walled Carbon Nanotube/Polyaniline Core/Shell Nanocomposites
,”
Nanotechnology
,
23
, p.
385701
.10.1088/0957-4484/23/38/385701
25.
“C-Therm TCi™ Thermal Conductivity Analyzer,” 2011, C-Therm Technologies, Fredericton, Canada, http://www.ctherm.com/files/Intro_to_TCi.pdf, Accessed: December 25, 2013.
26.
Wang
,
B. X.
,
Zhou
,
L. P.
, and
Peng
,
X. F.
,
2003
, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Tranfer
,
46
, pp.
2665
2672
.10.1016/S0017-9310(03)00016-4
27.
Regan
,
M. J.
,
Tostmann
,
H.
,
Pershan
,
P. S.
,
Magnussen
,
O. M.
,
DiMasi
,
E.
,
Ocko
,
B. M.
, and
Deutsch
,
M.
,
1997
, “
X-Ray Study of the Oxidation of Liquid-Gallium Surfaces
,”
Phys. Rev. B
,
55
, pp.
10786
10790
.10.1103/PhysRevB.55.10786
28.
Fir
,
M.
,
Orel
,
B.
,
Vuk
,
A. S.
,
Vilcnik
,
A.
,
Jese
,
R.
, and
Francetic
,
V.
,
2007
, “
Corrosion Studies and Interfacial Bonding of Urea/Poly(Dimethylsiloxane) Sol/Gel Hydrophobic Coatings on AA 2024 Aluminum Alloy
,”
Langmuir
,
23
, pp.
5505
5514
.10.1021/la062976g
You do not currently have access to this content.