This paper investigates the thermal and fluid dynamic characteristics due to multiple miniature axial fans with blade chord and span length scales less than 10 mm, impinging air onto finned surfaces. A coupled approach, utilizing both experimental and numerical techniques, has been devised to examine in detail the exit air flow interaction between cooling fans within an array. The findings demonstrate that fans positioned adjacently in an array can influence heat transfer performance both positively and negatively by up to 35% compared to an equivalent single fan—heat sink unit operating standalone. Numerical simulations have provided an insight into the flow fields generated by adjacent fans and also the air flow interaction with fixed fan motor support structures downstream. A novel experimental approach utilizing infrared thermography has been developed to locally assess the validity of the numerical models. In particular, an assessment on implementing compact lumped parameter fans and fans modeled with full geometric detail is shown for two configurations that are impinging air onto finned and flat surfaces. Overall, the study provides an insight into fan cooled heat sinks incorporating multiple miniature axial fans and general recommendations for improving current numerical modeling approaches.

References

References
1.
Chaudhari
,
M. B.
,
Puranik
,
B.
, and
Agrawal
,
A.
,
2012
, “
Heat Transfer Characteristics of a Heat Sink in the Presence of a Synthetic Jet
,”
IEEE Trans. Comp. Pack. Man. Tech.
,
2
(
3
), pp.
457
463
.10.1109/TCPMT.2011.2181373
2.
Qayoum
,
A.
,
Gupta
, V
.
,
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2010
, “
Perturbation of a Laminar Boundary Layer by a Synthetic Jet for Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5035
5057
.10.1016/j.ijheatmasstransfer.2010.07.061
3.
Zhang
,
J. Z.
,
Gao
,
S.
, and
Tan
,
X. M.
,
2013
, “
Convective Heat Transfer on a Flat Plate Subjected to Normally Synthetic Jet and Horizontal Flow
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
321
330
.10.1016/j.ijheatmasstransfer.2012.10.035
4.
Pavlova
,
A.
, and
Amitay
,
M.
,
2006
, “
Electronic Cooling Using Synthetic Jet Impingement
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
897
907
.10.1115/1.2241889
5.
Chaudhari
,
M.
,
Puranik
,
B.
, and
Agrawal
,
A.
,
2011
, “
Multiple Orifice Synthetic Jet for Improvement in Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2056
2065
.10.1016/j.ijheatmasstransfer.2010.12.023
6.
Acikalin
,
T.
, and
Garimella
,
S. V.
,
2009
, “
Analysis and Prediction of the Thermal Performance of Piezoelectrically Actuated Fans
,”
Heat Trans. Eng.
,
30
(
6
), pp.
487
498
.10.1080/01457630802529115
7.
Kimber
,
M.
,
Garimella
,
S. V.
, and
Raman
,
A.
,
2007
, “
Local Heat Transfer Coefficients Induced by Piezoelectrically Actuated Vibrating Cantilevers
,”
ASME J. Heat Trans.
,
129
, pp.
1168
1176
.10.1115/1.2740655
8.
Kimber
,
M.
,
Suzuki
,
K.
,
Kitsunai
,
N.
,
Seki
,
K.
, and
Garimella
,
S. V.
,
2009
, “
Pressure and Flow Rate Performance of Piezoelectric Fans
,”
IEEE Trans. Comp. Pack. Tech.
,
32
(
4
), pp.
766
775
.10.1109/TCAPT.2008.2012169
9.
Quinones
,
P. D.
, and
Mok
,
L. S.
,
2009
, “
Multiple Fan-Heat Sink Cooling System With Enhanced Evaporator Base: Design, Modeling, and Experiment
,”
ASME J. Elec. Pack.
,
131
(
3
), p.
031009
.10.1115/1.3153407
10.
Shigemitsu
,
T.
,
Fukutomi
,
J.
,
Okabe
,
Y.
,
Iuchi
,
K.
, and
Shimizu
,
H.
,
2011
, “
Unsteady Flow Condition of Contra-Rotating Small-Sized Axial Fan
,”
J. Therm. Sci.
,
20
(
6
), pp.
495
502
.10.1007/s11630-011-0501-6
11.
Liu
,
P.
,
Jin
,
Y.
, and
Wang
,
Y.
,
2011
, “
Effects of Rotor Structure on Performance of Small Size Axial Flow Fans
,”
J. Therm. Sci.
,
20
(
3
), pp.
205
210
.10.1007/s11630-011-0459-4
12.
Walsh
,
E.
, and
Grimes
,
R.
,
2007
, “
Low Profile Fan and Heat Sink Thermal Management Solution for Portable Applicatons
,”
Int. J. Therm. Sci.
,
46
, pp.
1182
1190
.10.1016/j.ijthermalsci.2007.03.010
13.
Lin
,
S. C.
, and
Chou
,
C. A.
,
2004
, “
Blockage Effect of Axial-Flow Fans Applied on Heat Sink Assembly
,”
Appl. Therm. Eng.
,
24
, pp.
2375
2389
.10.1016/j.applthermaleng.2004.03.009
14.
Quin
,
D.
, and
Grimes
,
R.
,
2008
, “
The Effect of Reynolds Number on Microaxial Flow Fan Performance
,”
ASME J. Fluid Eng.
,
130
(10), p.
101101
.10.1115/1.2953300
15.
San
,
J. Y.
, and
Lai
,
M. D.
,
2001
, “
Optimum Jet-To-Jet Spacing of Heat Transfer for Staggered Arrays of Impinging Air Jets
,”
Int. J. Heat Mass Transfer
,
44
(
21
), pp.
3997
4007
.10.1016/S0017-9310(01)00043-6
16.
Nuntadusit
,
C.
,
Wae-hayee
,
M.
,
Bunyajitradulya
,
A.
, and
Eiamsa-ard
,
S.
,
2012
, “
Heat Transfer Enhancement by Multiple Swirling Impinging Jets With Twisted-Tape Swirl Generators
,”
Int. Commun. Heat Mass Transfer
,
39
, pp.
102
107
.10.1016/j.icheatmasstransfer.2011.10.003
17.
Meyer
,
C. J.
,
2005
, “
Numerical Investigation of the Effect of Inlet Flow Distortions on Forced Draught Air-Cooled Heat Exchanger Performance
,”
Appl. Thermal Eng.
,
25
(11-12), pp.
1634
1649
10.1016/j.applthermaleng.2004.11.012.
18.
Stinnes
,
W. H.
, and
von Backstrom
,
T. W.
,
2002
, “
Effect of Cross-Flow on the Performance of Air-Cooled Heat Exchanger Fans
,”
Appl. Therm. Eng.
,
22
, pp.
1403
1415
.10.1016/S1359-4311(02)00060-1
19.
Jain
,
M.
,
Puranik
,
B.
, and
Agrawal
,
A.
,
2011
, “
A Numerical Investigation of Effects of Cavity and Orifice Parameters on the Characteristics of a Synthetic Jet Flow
,”
Sensors and Actuators A: Physical
,
165
, pp.
351
366
.10.1016/j.sna.2010.11.001
20.
Shankaran
,
G. V.
, and
Dogruoz
,
M. B.
,
2010
, “
Validation of an Advanced Fan Model With Multiple Reference Frame Approach
,” 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, June 2-5.10.1109/ITHERM.2010.5501404
21.
Grimes
,
R.
,
Davies
,
M.
,
Punch
,
J.
,
Dalton
,
T.
, and
Cole
,
R.
,
2001
, “
Modeling Electronic Cooling Axial Fan Flows
,”
ASME J. Elec. Pack.
,
123
(
2
), pp.
112
119
.10.1115/1.1339821
22.
Viswanadham
,
P.
,
2011
,
Essentials of Electronic Packaging—A Multidisciplinary Approach
,
ASME Press
,
New York
, pp.
9
12
.
23.
BSI, 1980
, “
BS 848—Fans for General Purpose, Part 1: Methods for Testing Performance
,” British Standards Institution, London.
24.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2006
, “
Experimental Investigation of Heat Transfer in Impingement Air Cooled Plate Fin Heat Sinks
,”
ASME J. Elec. Pack.
,
128
, pp.
412
418
.10.1115/1.2351906
25.
Stafford
,
J.
,
Walsh
,
E.
, and
Egan
,
V.
,
2009
, “
Characterizing Convective Heat Transfer Using Infrared Thermography and the Heated-Thin-Foil Technique
,”
Meas. Sci. Technol.
,
20
(
10
), p.
105401
.10.1088/0957-0233/20/10/105401
26.
Schulz
,
A.
,
2000
, “
Infrared Thermography as Applied to Film Cooling of Gas Turbine Components
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
948
956
.10.1088/0957-0233/11/7/311
27.
Stafford
,
J.
,
Walsh
,
E.
, and
Egan
, V
.
,
2010
, “
Local Heat Transfer Performance and Exit Flow Characteristics of a Miniature Axial Fan
,”
Int. J. Heat Fluid Flow
,
31
(
5
), pp.
552
560
.10.1016/j.ijheatfluidflow.2010.06.002
28.
Moffat
,
J. R.
,
1997
,
Thermal Measurements in Electronics Cooling: Uncertainty Analysis
,
CRC Press
, Boca Raton,
FL
, pp.
45
80
.
29.
ANSYS Icepak Users Guide V14.5, 2013, Ansys Inc., Canonsburg, PA.
30.
Liu
,
Q.
,
Qi
,
D.
, and
Mao
,
Y.
,
2006
, “
Numerical Calculation of Centrifugal Fan Noise
,”
Proc. IMechE Part C: J. Mech. Eng. Sci.
,
220
, pp.
1167
1177
.10.1243/09544062JMES211
You do not currently have access to this content.