No-flow underfill process has exhibited a narrow feasible process window due to electrical assembly yield loss or underfill voiding. In general, the assembly yield can be improved using reflow process designed at high temperature, while the high temperature condition potentially causes serious underfill voiding. Typically, the underfill voiding can result in critical defects, such as solders fatigue cracking or solders bridge, causing early failures in thermal reliability. Therefore, this study reviews a classical bubble nucleation theory to model voids nucleation during reflow process. The established model designed a reflow process possibly preventing underfill voiding. The reflow process was validated using systematic experiments designed on the theoretical study with a commercial high I/O counts (5000>), fine-pitch (<150 μm) flip chip. The theoretical model exhibits good agreement with experimental results. Thus, this paper presents systematic studies through the use of structured experimentation designed to achieve a high, stable yield, and void-free assembly process on the classical bubble nucleation theory.

References

References
1.
Milner
,
D.
,
Paydenkar
,
C.
, and
Baldwin
,
D. F.
,
2002
, “
Effects of Substrate Design on Underfill Voiding Using the Low Cost, High Throughput Flip Chip Assembly Process and No-Flow Underfill Materials
,”
IEEE Trans. Electron. Packag. Manuf.
,
25
, pp.
107
112
.10.1109/TEPM.2002.1021635
2.
Giesler
,
J.
,
O'Malley
,
G.
,
Williams
,
M.
, and
Machuga
,
S.
,
1996
, “
Flip Chip on Board Connection Technology: Process Characterization and Reliability
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
17
(3), pp.
256
263
.10.1109/96.311771
3.
Milner
,
D. W.
,
2001
, “
Application Assessment of High Throughput Flip Chip Assembly for a High Lead-Eutectic Solder Cap Interconnect System Using No-Flow Underfill Materials
,”
IEEE Trans. Electron. Packag. Manuf.
,
24
, pp.
307
312
.10.1109/6104.980040
4.
Lee
,
S.
,
Master
,
R.
, and
Baldwin
,
D. F.
,
2007
, “
Assembly Yields Characterization of High I/O Density, Fine Pitch Flip Chip in Package Using No-Flow Underfill
,”
57th Electronic Components and Technology
Conference (
ECTC'07
), Reno, NV, May 29-June 1, pp.
35
41
.10.1109/ECTC.2007.373773
5.
Lee
,
S.
,
Master
,
R.
, and
Baldwin
,
D. F.
,
2007
, “
Assembly Process Characterization and Failure Analysis of Flip Chip Assemblies Using No-Flow Underfill
,”
International Wafer Level Packaging Congress
(IWLPC 2007), San Jose, CA, September 17–19, pp.
169
175
.
6.
Hau-Riege
,
C. S.
,
Hau-Riege
,
S. P.
, and
Marathe
,
A. P.
,
2004
, “
The Effect of Inter-Level Dielectric on the Critical Tensile Stress to Void Nucleation for the Reliability of Cu Interconnects
,”
J. Appl. Phys.
,
96
, pp.
5792
5796
.10.1063/1.1787139
7.
Lee
,
S.
,
Master
,
R.
,
Baldwin
,
D. F.
, and
Parthasarathy
,
S.
,
2007
, “
Void Formation Study of High I/O Density and Fine Pitch Flip Chip in Package Using No-Flow Underfill
,”
Surface Mount Technology Association International Conference
, Orlando, FL, October 7–11, pp.
525
530
.
8.
Popelar
,
S. F.
,
1997
, “
A Parametric Study of Flip Chip Reliability Based on Solder Fatigue Modelling
,”
21st IEEE/CPMT International Electronics Manufacturing Technology Symposium
, Austin, TX, October 13–15, pp.
299
307
.10.1109/IEMT.1997.626935
9.
Niu
,
T.-M.
,
1999
, “
Void-Effect Modeling of Flip-Chip Encapsulation on Ceramic Substrate
,”
IEEE Trans. Compon. Packag. Technol.
,
22
, pp.
484
487
.10.1109/6144.814962
10.
Yunus
,
M.
,
Srihari
,
K.
,
Pitarresi
,
J. M.
, and
Primavera
,
A.
,
2003
, “
Effect of Voids on the Reliability of BGA/CSP Solder Joints
,”
Microelectron. Reliab.
,
43
, pp.
2077
2086
.10.1016/S0026-2714(03)00124-0
11.
Wang
,
D.
, and
Panton
,
R. L.
,
2006
, “
Experimental Study of Void Formation in Eutectic and Lead-Free Solder Bumps of Flip-Chip Assemblies
,”
ASME J. Electron. Packag.
,
128
, pp.
202
207
.10.1115/1.2229215
12.
Liang
,
S. W.
,
Chang
,
Y. W.
,
Shao
,
T. L.
, and
Chen
,
C.
,
2006
, “
Effect of Three-Dimensional Current and Temperature Distributions on Void Formation and Propagation in Flip-Chip Solder Joints During Electromigration
,”
Appl. Phys. Lett.
,
89
, p.
022117
.10.1063/1.2220550
13.
Wang
,
D.
, and
Panton
,
R. L.
,
2005
, “
Effect of Reversing Heat Flux Direction During Reflow on Void Formation in High-Lead Solder Bumps
,”
ASME J. Electron. Packag.
,
127
, pp.
440
445
.10.1115/1.2070047
14.
Wang
,
D.
, and
Panton
,
R. L.
,
2005
, “
Experimental Study of Void Formation in High-Lead Solder Joints of Flip-Chip Assemblies
,”
ASME J. Electron. Packag.
,
127
, pp.
120
126
.10.1115/1.1876472
15.
Wang
,
J.
,
2002
, “
Underfill of Flip Chip on Organic Substrate: Viscosity, Surface Tension, and Contact Angle
,”
Microelectron. Reliab.
,
42
, pp.
293
299
.10.1016/S0026-2714(01)00231-1
16.
Hurley
,
J. M.
,
Berfield
,
T.
,
Ye
,
S.
,
Johnson
,
R. W.
,
Zhao
,
R.
, and
Tian
,
G.
,
2002
, “
Kinetic Modeling of No-Flow Underfill Cure and Its Relationship to Solder Wetting and Voiding
,”
52nd Electronic Components and Technology Conference
, San Diego, CA, May 28–31, pp.
828
833
.10.1109/ECTC.2002.1008196
17.
Lee
,
S.
,
Yim
,
M. J.
,
Master
,
R.
,
Wong
,
C. P.
, and
Baldwin
,
D. F.
,
2008
, “
Void Formation Study of Flip Chip in Package Using No-Flow Underfill
,”
IEEE Trans. Electron. Packag. Manuf.
,
31
, pp.
297
305
.10.1109/TEPM.2008.2002951
18.
Lee
,
S.
,
Yim
,
M. J.
,
Master
,
R.
,
Wong
,
C. P.
, and
Baldwin
,
D. F.
,
2008
, “
Assembly Yield Characterization and Void Formation Study on High I/O Density and Fine Pitch Flip Chip in Package Using No-Flow Underfill
,”
Surface Mount Technology Association International Conference
, Orlando, FL, August 21-28, pp. 671–677.
19.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
,
2005
, “
Mechanical Nonequilibrium Considerations in Homogeneous Bubble Nucleation for Unsteady-State Boiling
,”
Int. J. Heat Mass Transfer
,
48
, pp.
3081
3096
.10.1016/j.ijheatmasstransfer.2005.02.031
20.
Turnbull
,
D.
,
1950
, “
Kinetics of Heterogeneous Nucleation
,”
J. Chem. Phys.
,
18
, pp.
198
203
.10.1063/1.1747588
21.
Ramesh
,
N. S.
,
Rasmussen
,
D. H.
, and
Campbell
,
G. A.
,
1994
, “
The Heterogeneous Nucleation of Microcellular Foams Assisted by the Survival of Microvoids in Polymers Containing Low Glass Transition Particles
,”
Polym. Eng. Sci.
,
34
, pp.
1685
1706
.10.1002/pen.760342206
22.
Colton
,
J. S.
, and
Suh
,
N.
,
1987
, “
Nucleation of Microcellular Foam: Theory and Practice
,”
Polym. Eng. Sci.
,
27
, pp.
500
503
.10.1002/pen.760270704
23.
Blander
,
M.
, and
Katz
,
J. L.
,
1975
, “
Bubble Nucleation in Liquids
,”
AIChE J.
,
21
, pp.
833
848
.10.1002/aic.690210502
24.
Wang
,
T.
,
Chew
,
T. H.
,
Lum
,
C.
,
Chew
,
Y. X.
,
Miao
,
P.
, and
Foo
,
L.
,
2001
, “
Assessment of Flip Chip Assembly and Reliability Via Reflowable Underfill
,”
51st Electronic Components and Technology Conference
, Orlando, FL, May 29–June 1, pp.
803
809
.10.1109/ECTC.2001.927875
25.
Lazarakis
,
T.
, and
Baldwin
,
D. F.
,
2002
, “
Processing of No-Flow Fluxing Underfills for Flip Chip Assembly
,”
8th International Symposium on Advanced Packaging Materials
, Stone Mountain, GA, March 3–6, pp.
232
237
10.1109/ISAPM.2002.990392.
You do not currently have access to this content.