A design of experiment (DOE) methodology based on numerical simulation is presented to improve thermal fatigue reliability of multirow quad flat nonlead (QFN) packages. In this method, the influences of material properties, structural geometries, and temperature cycling profiles on thermal fatigue reliability are evaluated, a L27(38) orthogonal array is built based on Taguchi method to figure out optimized factor combination design for promoting thermal fatigue reliability. Analysis of variance (ANOVA) is carried out to examine the influence of factors on the thermal fatigue reliability and to find the significant factors. Anand constitutive model is adopted to describe the viscoplastic behavior of lead-free solder Sn3.0Ag0.5Cu. The stress and strain in solder joints under temperature cycling are studied by 3D finite element (FE) model. The modified Coffin–Manson model is employed to predict the fatigue life of solder joints. Results indicate that the coefficients of thermal expansion (CTE) of printed circuit board (PCB), the height of solder joint, and CTE of epoxy molding compound (EMC) have critical influence on thermal fatigue life of solder joints. The fatigue life of multirow QFN package with original design is 767 cycles, which can be substantially improved by 5.43 times to 4165 cycles after the optimized factor combination design based on the presented method.

References

1.
Tee
,
T. Y.
,
Ng
,
H. S.
,
Yap
,
D.
, and
Zhong
,
Z. W.
,
2003
, “
Comprehensive Board-Level Solder Joint Reliability Modeling and Testing of QFN and Power QFN Packages
,”
Microelectron. Reliab.
,
43
(
8
), pp.
1329
1338
.10.1016/S0026-2714(03)00184-7
2.
Vandevelde
,
B.
,
Gonzalez
,
M.
,
Limaye
,
P.
,
Ratchev
,
P.
, and
Beyne
,
E.
,
2007
, “
Thermal Cycling Reliability of SnAgCu and SnPb Solder Joints: A Comparison for Several IC-Packages
,”
Microelectron. Reliab.
,
47
(
2–3
), pp.
259
265
.10.1016/j.microrel.2006.09.034
3.
De Vries
,
J.
,
Jansen
,
M.
, and
van Driel
,
W.
,
2009
, “
Solder-Joint Reliability of HVQFN-Packages Subjected to Thermal Cycling
,”
Microelectron. Reliab.
,
49
(
3
), pp.
331
339
.10.1016/j.microrel.2008.12.007
4.
Gershman
,
I.
, and
Bernstein
,
J. B.
,
2012
, “
Structural Health Monitoring of Solder Joints in QFN Package
,”
Microelectron. Reliab.
,
52
(
12
), pp.
3011
3016
.10.1016/j.microrel.2012.07.001
5.
Retuta
,
D. V.
,
Lim
,
B. K.
, and
Tan
,
H. B.
,
2006
, “
Design and Process Optimization for Dual Row QFN
,”
56th IEEE Electronic Components and Technology Conference
, San Diego, CA, May 30–June 2, pp.
1827
1835
.10.1109/ECTC.2006.1645908
6.
England
,
L.
,
Liu
,
Y.
,
Qian
,
R.
, and
Kim
,
J. H.
,
2010
, “
Solder Joint Reliability Analysis and Testing of a Dual Row QFN Package
,” SMTA International Conference, San Diego, CA, October 4–8.
7.
Anand
,
L.
,
1985
, “
Constitutive Equations for Hot-Working of Metals
,”
Int. J. Plast.
,
1
(
3
), pp.
213
231
.10.1016/0749-6419(85)90004-X
8.
Darveaux
,
R.
,
2000
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation
,”
IEEE Electronic Components and Technology Conference
, Las Vegas, NV, May 21–24, pp.
1048
1058
10.1109/ECTC.2000.853299.
9.
Chen
,
X.
,
Chen
,
G.
, and
Sakane
,
M.
,
2005
, “
Prediction of Stress-Strain Relationship With an Improved Anand Constitutive Model for Lead-Free Solder Sn3.5Ag
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
1
), pp.
111
116
.10.1109/TCAPT.2004.843157
10.
Sun
,
W.
,
Zhu
,
W. H.
,
Danny
,
R.
,
Che
,
F. X.
,
Wang
,
C. K.
,
Anthony Sun
,
Y. S.
, and
Tan
,
H. B.
,
2007
, “
Study on the Board-Level SMT Assembly and Solder Joint Reliability of Different QFN Packages
,”
IEEE International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-System (EuroSime 2007)
, London, April 16–18, pp.
372
377
10.1109/ESIME.2007.360010.
11.
Fu
,
C.
,
McDowell
,
D. L.
, and
Ume
,
I. C.
,
1998
, “
Finite Element Procedure of a Cyclic Thermoviscoplasticity Model for Solder and Copper Interconnects
,”
ASME J. Electron. Packag.
,
120
(
1
), pp.
24
34
.10.1115/1.2792281
12.
Lau
,
J. H.
,
Pan
,
S. H.
, and
Chang
,
C.
,
2002
, “
Creep Analysis of Wafer Level Chip Scale Package (WLCSP) With 96.5Sn-3.5Ag and 100In Lead-Free Solder Joints and Microvia Build-up Printed Circuit Board
,”
ASME J. Electron. Packag.
,
124
(
2
), pp.
69
76
.10.1115/1.1400995
13.
Sasaki
,
K.
,
Kobayashi
,
T.
, and
Ohguchi
,
K. I.
,
2007
, “
Experimental Observation of Correlation Between Creep and Uniaxial Ratchetting of Sn/37Pb and Sn/3Ag/0.5Cu Solder Alloys
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
82
89
.10.1115/1.2429714
14.
Engelmaier
,
W.
,
1983
, “
Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling
,”
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
6
(
3
), pp.
232
237
.10.1109/TCHMT.1983.1136183
15.
Nathan
,
B.
, and
Craig
,
H.
,
2006
, “
A Comparison of the Isothermal Fatigue Behavior of Sn-Ag-Cu to Sn-Pb Solder
,” IPC-Printed Circuits Expo, Apex, and the Designers Summit, Anaheim, CA, February 5–10, Vol. 2, pp.
848
862
.
16.
Lee
,
H. L.
,
Chang
,
S. J.
,
Hwang
,
S. J.
,
Su
,
F.
, and
Chen
,
S. K.
,
2003
, “
Computer-Aided Design of a TSOP II LOC Package Using Taguchi's Parameter Design Method to Optimize Mold-Flow Balance
,”
ASME J. Electron. Packag.
,
125
(
2
), pp.
268
275
.10.1115/1.1569957
17.
Jong
,
W. R.
,
Chen
,
S. C.
,
Tsai
,
H. C.
,
Chiu
,
C. C.
, and
Chang
,
H. T.
,
2006
, “
The Geometrical Effects of Bumps on the Fatigue Life of Flip-Chip Packages by Taguchi Method
,”
J. Reinf. Plast. Compos.
,
25
(
1
), pp.
99
114
.10.1177/0731684406055459
18.
Jong
,
W. R.
,
Tsai
,
H. C.
,
Chang
,
H. T.
, and
Peng
,
S. H.
,
2008
, “
The Effects of Temperature Cyclic Loading on Lead-Free Solder Joints of Wafer Level Chip Scale Package by Taguchi Method
,”
ASME J. Electron. Packag.
,
130
(
1
), p.
011001
.10.1115/1.2837508
19.
Yen
,
Y. T.
,
Fang
,
T. H.
, and
Lin
,
Y. C.
,
2010
, “
Application of a Taguchi Method Technique in Determining the Laminating Process Parameters for a Bonding Sheet
,”
ASME J. Electron. Packag.
,
132
(
4
), p.
041005
.10.1115/1.4002723
You do not currently have access to this content.