Kinks have a strong influence on the structural performance of wire bonds. In this study, a variable-length link-spring model has been developed to better understand kink formation. In this model, a gold wire was decomposed into segments that were represented by a link and a torsional spring. One end of the gold wire was fixed, and the other end was free. The friction and air tension forces at the wire ends were considered a function of the capillary position, and the wire segments and moment balance equations were added at the free end as the wire length increased. By using this model, the wire profile, moment, and curvature diagrams at the reverse motion stage were obtained to study the dynamical kink formation and wire-length increasing processes. The analysis result was verified experimentally. Good agreement is obtained between the analytical and the experimental wire profiles. This study indicates that a moment magnitude of several hundred mN·μm is required to form a kink, and the wire profile is the result of the residual curvature and the instantaneous bending moment.

References

1.
Kung
,
H. K.
,
Sun
,
Y. P.
,
Lee
,
J. N.
, and
Chen
,
H. S.
,
2008
, “
A Method to Determine the Sweep Resistance of Wire Bonds for Microelectronic Packaging
,”
Microelectron. Eng.
,
85
(
9
), pp.
1902
1909
.10.1016/j.mee.2008.06.018
2.
Shu
,
B.
,
1992
, “
Wire Bond Development for High-Pincount Surface-Mount
,”
Proceedings 42nd Electronic Components and Technology Conference
(
'92 ECTC
),
San Diego, May 18–20
, pp.
890
898
.10.1109/ECTC.1992.204312
3.
Groover
,
R.
,
Shu
,
W. K.
, and
Lee
,
S. S.
,
1994
, “
Wire Bond Loop Profile Development for Fine Pitch-Long Wire Assembly
,”
IEEE Trans. Semicond. Manuf.
,
7
(
3
), pp.
393
399
.10.1109/66.311344
4.
Seuntjens.
,
J.
,
Lu
,
Z. P.
,
Emily
,
R.
,
Tok
,
C. W.
,
Wulff
,
F.
, and
San Sanda Aung
,
A. S. K.
,
1999
, “
Development of New Ultra-High Stiffness Gold Bonding Wire
,” available at: www.utilisegold.com/assets/file/rs_archive/AW99_paper.PDF
5.
Saraswati
,
E.
,
Phyu
,
T.
,
D.
Stephan
,
F. W.
Wulff
, and
C. D.
Breach
, A. D. R. M. C.,
2004
, “
Looping Behaviour of Gold Ballbonding Wire
,”
Proceedings of 6th Electronics Packaging Technology Conference
(
EPTC 2004
),
Singapore, December 8–10
, pp.
723
728
.10.1109/EPTC.2004.1396702
6.
Ohno
,
Y.
,
Ohzeki
,
Y.
,
Aso
,
T.
, and
Kitamura
,
O.
,
1992
, “
Factors Governing the Loop Profile in Au Bonding Wire
,”
Proceedings 42nd Electronic Components and Technology Conference
(
'92 ECTC
),
San Diego, CA, May 18–20
, pp.
899
902
.10.1109/ECTC.1992.204313
7.
Tay
,
A. A. O.
,
Seah
,
B. C.
, and
Ong
,
S. H.
,
1997
, “
Finite Element Simulation of Wire Looping During Wirebonding
,”
1997 Proceedings of the Pacific Rim/ASME International Intersociety Electronic and Photonic Packaging Conference (InterPack'97), Kohala Coast, HI, June 15–19
, Vol.
1
, pp.
399
406
.
8.
Ng
,
B. H.
,
Tay
,
A. A. O.
, and
Ong
,
S. H.
,
2002
, “
Three Dimensional Finite Element Simulation of Wire Looping Process in Wirebonding
,”
Proceedings 4th Electronics Packaging Technology Conference
(
EPTC 2002
),
Singapore, December 10–12
, pp.
334
337
.10.1109/EPTC.2002.1185693
9.
Liu
,
D. S.
, and
Chao
,
Y. C.
,
2003
, “
Effects of Dopant, Temperature, and Strain Rate on the Mechanical Properties of Micrometer Gold-Bonding Wire
,”
J. Electron. Mater.
,
32
(
3
), pp.
159
165
.10.1007/s11664-003-0187-y
10.
Liu
,
D. S.
,
Chao
,
Y. C.
, and
Wang
,
C. H.
,
2004
, “
Study of Wire Bonding Looping Formation in the Electronic Packaging Process Using the Three-Dimensional Finite Element Method
,”
Finite Elem. Anal. Design
,
40
(
3
), pp.
263
286
.10.1016/S0168-874X(02)00226-3
11.
Lo
,
Y. L.
,
Ho
,
T. L.
,
Chen
,
J. L.
,
Lee
,
R. S.
, and
Chen
,
T. C.
,
2001
, “
Linkage-Spring Model in Analyzing Wirebonding Loops
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
3
), pp.
450
456
.10.1109/6144.946493
12.
Lo
,
Y. L.
,
Chen
,
T. C.
, and
Ho
,
T. L.
,
2001
, “
Design in Triangle-Profiles and T-Profiles of a Wirebond Using a Linkage-Spring Model
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
3
), pp.
457
467
.10.1109/6144.946494
13.
Lo
,
Y. L.
, and
Tsao
,
C. C.
,
2002
, “
Wirebond Profiles Characterized by a Modified Linkage-Spring Model Which Includes a Looping Speed Factor
,”
Microelectron. Reliab.
,
42
(
2
), pp.
285
291
.10.1016/S0026-2714(01)00246-3
14.
Wang
,
F.
,
Chen
,
Y.
, and
Han
,
L.
,
2012
, “
Experiment Study of Dynamic Looping Process for Thermosonic Wire Bonding
,”
Microelectron. Reliab.
,
52
(
6
), pp.
1105
1111
.10.1016/j.microrel.2012.01.014
15.
Chucheepsakul
,
S.
,
Buncharoen
,
S.
, and
Huang
,
T.
,
1995
, “
Elastica of Simple Variable-Arc-Length Beam Subjected to End Moment
,”
J. Eng. Mech.
,
121
(
7
), pp.
767
772
.10.1061/(ASCE)0733-9399(1995)121:7(767)
16.
Athisakul
,
C.
, and
Chucheepsakul
,
S.
,
2008
, “
Effect of Inclination on Bending of Variable-Arc-Length Beams Subjected to Uniform Self-Weight
,”
Eng. Struct.
,
30
(
4
), pp.
902
908
.10.1016/j.engstruct.2007.04.010
17.
Plaut
,
R. H.
,
Dillard
,
D. A.
, and
Borum
,
A. D.
,
2011
, “
Collapse of Heavy Cantilevered Elastica With Frictional Internal Support
,”
ASME J. Appl. Mech.
,
78
(
4
), p.
041011
.10.1115/1.4003755
18.
Humer
,
A.
, and
Irschik
,
H.
,
2011
, “
Large Deformation and Stability of an Extensible Elastica With an Unknown Length
,”
Int. J. Solids Struct.
,
48
(
9
), pp.
1301
1310
.10.1016/j.ijsolstr.2011.01.015
19.
Humer
,
A.
,
2011
, “
Elliptic Integral Solution of the Extensible Elastica With a Variable Length Under a Concentrated Force
,”
Acta Mech.
,
222
(
3–4
), pp.
209
233
.10.1007/s00707-011-0520-0
20.
Pulngern
,
T.
,
Halling
,
M. W.
, and
Chucheepsakul
,
S.
,
2005
, “
Large Deflections of Variable-Arc-Length Beams Under Uniform Self Weight: Analytical and Experimental
,”
Struct. Eng. Mech.
,
19
, pp.
413
423
.10.12989/sem.2005.19.4.413
21.
F.L.
Wang
,
Y., C.
, and
Lei
,
H.
,
2012
, “
Experiment Study of Dynamic Looping Process for Thermosonic Wire Bonding
,”
Microelectron. Reliab.
,
52
, pp.
1105
1111
.10.1016/j.microrel.2012.01.014
22.
Tay
,
A. A. O.
,
Yeo
,
K. S.
,
Wu
,
J. H.
, and
Lim
,
T. B.
,
1995
, “
Wirebond Deformation During Molding of IC Packages
,”
ASME J. Electron. Packag.
,
117
(
1
), pp.
14
19
.10.1115/1.2792061
You do not currently have access to this content.