A stepped-bar apparatus has been designed and constructed to characterize the thermal resistance of materials using steady-state heat transfer techniques. The design of the apparatus is a modification of the ASTM D5470 standard where reference bars of equal cross-sectional area are used to extrapolate surface temperatures and heat flux across a sample of unknown thermal resistance. The design modification involves intentionally oversizing the upper reference bar (URB) of the apparatus to avoid contact area uncertainty due to reference bar misalignment, which is difficult to account for, as well as the high cost that can be associated with equipping the apparatus with precise alignment controls (e.g., pneumatic alignment). Multidimensional heat transfer in the upper reference bar near the sample interface is anticipated using numerical modeling. The resulting nonlinear temperature profile in the upper reference bar is accounted for by fitting a second order regression line through thermocouple readings near the sample interface. The thermal resistances of commercially available thermal gap pads and thermal pastes were measured with the stepped-bar apparatus; the measured values were in good agreement with published results, and exhibited a high degree of reproducibility. The measurement uncertainty of both the standard and stepped-bar apparatus decrease with increased thermocouple precision. Notably, the uncertainty due to reference bar misalignment with the standard apparatus becomes more pronounced as thermocouple precision and the number of thermocouples increases, which suggests that the stepped-bar apparatus would be especially advantageous for enabling accurate, high-precision measurements of very low thermal resistances.

References

References
1.
Cola
,
B. A.
,
Xu
,
J.
, and
Fisher
,
T. S.
,
2009
, “
Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Thermal Interfaces
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3490
3503
.10.1016/j.ijheatmasstransfer.2009.03.011
2.
Harris
,
D. K.
,
Palkar
,
A.
, and
Wonacott
,
G.
,
2010
, “
An Experimental Investigation in the Performance of Water-Filled Silicon Microheat Pipe Arrays
,”
ASME J. Electron. Packag.
,
132
(
2
), p.
021005
.10.1115/1.4001745
3.
Huang
,
H.
,
Liu
,
C. H.
,
Wu
,
Y.
, and
Fan
,
S.
,
2005
, “
Aligned Carbon Nanotube Composite Films for Thermal Management
,”
Adv. Mater.
,
17
(
13
), pp.
1652
1656
.10.1002/adma.200500467
4.
Narumanchi
,
S.
,
Mihalic
,
M.
, and
Kelly
,
K.
,
2008
, “
Thermal Interface Materials for Power Electronics Applications
,” Itherm 2008, Orlando, FL, May 28–31, Paper No. NREL/CP-540-42972.
5.
Xu
,
J.
, and
Fisher
,
T. S.
,
2005
, “
Enhancement of Thermal Interface Materials With Carbon Nanotube Arrays
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1658
1666
.10.1016/j.ijheatmasstransfer.2005.09.039
6.
Gwinn
,
J. P.
, and
Webb
,
R. L.
,
2003
, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.
,
34
(
3
), pp.
215
222
.10.1016/S0026-2692(02)00191-X
7.
Khandelwal
,
M.
, and
Mench
,
M. M.
,
2006
, “
Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials
,”
J. Power Sources
,
161
, pp.
1106
1115
.10.1016/j.jpowsour.2006.06.092
8.
Liao
,
P.
,
Hua
,
Z. K.
,
Liao
,
Y. C.
, and
Zhang
,
J. H.
,
2010
, “
A Novel Thermal Conductivity Meter for Thermal Interface Materials in Optoelectronic Device
,”
11th International Conference on Electronic Packaging Technology and High Density Packaging
(
ICEPT-HDP
), Xi'an, China, August 16–19, pp.
889
892
.10.1109/ICEPT.2010.5582397
9.
ATSM
,
2006
, “
Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulating Materials
,” D5470, ASTM International, West Conshohocken, PA.
10.
Savija
,
I.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, “
Effective Thermophysical Properties of Thermal Interface Materials: Part I—Definitions and Models
,”
Proceedings of ASME International Electronic Packaging Technical Conference and Exhibition
, Maui, HI, July 6–11,
ASME
Paper No. IPACK2003-35088, pp.
189
200
.10.1115/IPACK2003-35008
11.
Savija
,
I.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
, “
Effective Thermophysical Properties of Thermal Interface Materials: Part II—Experiments and Data
,”
Proceedings of International Electronic Packaging Technical Conference and Exhibition
, Maui, HI, July 6–11,
ASME
Paper No. IPACK2003-35264, pp.
567
573
.10.1115/IPACK2003-35264
12.
Kearns
,
D.
,
2003
, “
Improving Accuracy and Flexibility of ASTM D 5470 for High Performance Thermal Interface Materials
,”
19th IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, March 11–13, pp.
129
133
.10.1109/STHERM.2003.1194350
13.
Kempers
,
R.
,
Kolodner
,
P.
,
Lyons
,
A.
, and
Robinson
,
A. J.
,
2009
, “
A High-Precision Apparatus for the Characterization of Thermal Interface Materials
,”
Rev. Sci. Instrum.
,
80
,
p. 095111
.10.1063/1.3193715
14.
ASTM
,
2004
, “
Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique
,” E1225, ASTM International, West Conshohocken, PA.
15.
Stockwell Elastomerics
,
2012
, “
Thermally Conductive Silicon Rubber Heat Transfer Pads and Gaskets From Gap Filling Compounds
,” Stockwell Elastomerics, Inc., Philadelphia, PA, http://www.stockwell.com/data_sheets/thermal/se200_thermal_mgmt_products.pdf
16.
ASTM
,
2011
, “
Standard Specification and Temperature-Electromotive Force (emf) Tables for Standardized Thermocouples
,” E230/E230M-11, ASTM International, West Conshohocken, PA.
17.
Hot Disk
,
2012
, “
TPS 1500
,” Hot Disk AB, Gothenburg, Sweden, http://www.hotdiskinstruments.com/products/instruments/tps-1500.html
18.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.
19.
GrafTech
,
2012
, “HITHERM Thermal Interface Materials Technical Data Sheet 318,” GraphTech International, Parma, OH, http://graftechaet.com/getattachment/a98eb932-9a95-419f-82e5-9d7683b6b67b/eGRAF%C2%AE-HITHERM%E2%84%A2-Typical-Properties.aspx
20.
Bowker
,
A. L.
, and
Lieberman
,
G. J.
,
1972
,
Engineering Statistics
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Culham
,
J. R.
,
Teertstra
,
P.
,
Savija
,
I.
, and
Yovanovich
,
M. M.
,
2002
, “
Design, Assembly and Commissioning of a Test Apparatus for Characterizing Thermal Interface Materials
,”
Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2002
), San Diego, CA, June 1, pp.
128
135
.10.1109/ITHERM.2002.1012448
22.
Hunan Zhenhua Analysis Instrument Co.
,
2013
, “
DRX-I-PB/PC Thermal Conductivity Tester (Guarded Hot Plate Testing System)
,” http://hfyq.en.alibaba.com/product/553015923-209348254/DRX_I_PB_PC_Thermal_Conductivity_Tester_Guarded_hot_plate_testing_system_.html
You do not currently have access to this content.