A numerical study is performed to investigate the effects of nanofluids on the heat transfer performance of a pulsating heat pipe (PHP). Pure water is employed as the base fluid while Al2O3 with two different particle sizes, 38.4 and 47 nm, is used as nanoparticle. Different parameters including displacement of liquid slug, vapor temperature and pressure, liquid slug temperature distribution, as well as sensible and latent heat transfer in evaporator and condenser are calculated numerically and compared with the ones for pure water as working fluid. The results show that nanofluid has significant effect on heat transfer enhancement of the system and with increasing volume fraction and decreasing particles diameter the enhancement intensifies.

References

References
1.
Xiao
,
L.
, and
Cao
,
Y.
,
2012
, “
Recent Advances in Pulsating Heat Pipes and Its Derivatives
,”
J. Enhanced Heat Transfer
,
19
(
3
), pp.
213
231
.10.1615/JEnhHeatTransf.2012001896
2.
Shahare
,
P. V.
, and
Jain
,
K. K.
,
2012
, “
Review of Unsolved Matter Related to Pulsating Heat Pipes
,”
Int. J. Mech. Eng. Rob. Res.
,
1
(
2
), pp.
220
228
.
3.
Karimi
,
G.
, and
Culham
,
J. R.
,
2004
, “
Review and Assessment of Pulsating Heat Pipe Mechanism for High Heat Flux Electronic Cooling
,” The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITHERM'04
), Las Vegas, NV, June 1–4, pp. 52–59.10.1109/ITHERM.2004.1318252
4.
Zhang
,
Y.
, and
Faghri
,
A.
,
2008
, “
Advances and Unresolved Issues in Pulsating Heat Pipes
,”
Heat Transfer Eng.
,
29
(
1
), pp.
20
44
.10.1080/01457630701677114
5.
Seyf
,
H. R.
, and
Feizbakhshi
,
M.
,
2012
, “
Computational Analysis of Nanofluid Effects on Convective Heat Transfer Enhancement of Micro-Pin-Fin Heat Sinks
,”
Int. J. Therm. Sci.
,
58
, pp.
168
179
.10.1016/j.ijthermalsci.2012.02.018
6.
Seyf
,
H. R.
, and
Nikaaein
,
B.
,
2012
, “
Analysis of Brownian Motion and Particle Size Effects on the Thermal Behavior and Cooling Performance of Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
58
, pp.
36
44
.10.1016/j.ijthermalsci.2012.02.022
7.
Shalchi-Tabrizi
,
A.
, and
Seyf
,
H. R.
,
2012
, “
Analysis of Entropy Generation and Convective Heat Transfer of Al2O3 Nanofluid Flow in a Tangential Micro Heat Sink
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4366
4375
.10.1016/j.ijheatmasstransfer.2012.04.005
8.
Seyf
,
H. R.
, and
Mohammadian
,
S. K.
,
2011
, “
Thermal and Hydraulic Performance of Counterflow Microchannel Heat Exchangers With and Without Nanofluids
,”
ASME J. Heat Transfer
,
133
(
8
), p.
081801
.10.1115/1.4003553
9.
Yu
,
W.
,
France
,
D. M.
,
Choi
,
S. U. S.
, and
Routbort
,
J. L.
,
2007
, “
Review and Assessment of Nanofluid Technology for Transportation and Other Applications
,” Technical Report 78, Argonne National Laboratory, Report No. ANL/ESD/07-9.
10.
Godson
,
L.
,
Raja
,
B.
,
Lal
,
D.
, and
Wongwises
,
S.
,
2010
, “
Enhancement of Heat Transfer Using Nanofluids—An Overview
,”
Renewable Sustainable Energy Rev.
,
14
, pp.
629
641
.10.1016/j.rser.2009.10.004
11.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
, pp.
1
19
.10.1016/j.ijthermalsci.2006.06.010
12.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
, and
Choi
,
S. U. S.
, and
Tirumala
,
M.
,
2006
, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
, p.
143116
.10.1063/1.2192971
13.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
B.
,
Choi
,
S. U. S.
, and
Tirumala
,
M.
, “
An Experimental Investigation of Heat Transport Capability in a Nano-Fluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
, pp.
1213
1216
.10.1115/1.2352789
14.
Wilson
,
C.
,
Ma
,
H. B.
,
Yu
,
Q.
, and
Park
,
B.
,
2006
, “
High Thermal Conductivity of Diamond Nanofluid and Its Effect on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Proceedings of IMECE 2006, ASME International Mechanical Engineering Congress and Exposition
, Chicago, IL, November 5–10,
ASME
Paper No. IMECE2006-14417, pp. 289–295.10.1115/IMECE2006-14417
15.
Lin
,
Y. H.
,
Kang
,
S. W.
, and
Chen
,
H. L.
,
2008
, “
Effect of Silver Nano-Fluid on Pulsating Heat Pipe Thermal Performance
,”
Appl. Therm. Eng.
,
28
, pp.
1312
1317
.10.1016/j.applthermaleng.2007.10.019
16.
Wannapakhe
,
S.
,
Rittidech
,
S.
,
Bubphachot
,
B.
, and
Watanabe
,
O.
,
2009
, “
Heat Transfer Rate of a Closed-Loop Oscillating Heat Pipe With Check Valves Using Silver Nanofluid as Working Fluid
,”
J. Mech. Sci. Technol.
,
23
, pp.
1576
1582
.10.1007/s12206-009-0424-2
17.
Qu
,
J.
,
Wu
,
H.
, and
Cheng
,
P.
,
2010
Thermal Performance of an Oscillating Heat Pipe With Al2O3-Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
, pp.
111
115
.10.1016/j.icheatmasstransfer.2009.10.001
18.
Qu
,
J.
, and
Wu
,
H.
,
2011
, “
Thermal Performance Comparison of Oscillating Heat Pipes With SiO2/Water and Al2O3/Water Nanofluids
,”
Int. J. Therm. Sci.
,
50
, pp.
1954
1962
.10.1016/j.ijthermalsci.2011.04.004
19.
Ji
,
Y.
,
Wilson
,
C.
,
Chen
,
H.
, and
Ma
,
H. B.
,
2011
,“
Particle Shape Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Nanoscale Res. Lett.
,
6
,
p. 296
.10.1186/1556-276X-6-296
20.
Cheng
,
P.
,
Thompson
,
S.
,
Boswell
,
J.
, and
Ma
,
H. B.
,
2010
, “
An Investigation of Flat-Plate Oscillating Heat Pipes
,”
Proceedings of 14th International Heat Transfer Conference (IHTC14)
,
Washington, DC
, August 8–13,
ASME
Paper No. IHTC14-22706, pp.
385
391
.10.1115/IHTC14-22706
21.
Ji
,
Y.
,
Ma
,
H. B.
,
Su
,
F.
, and
Wang
,
G.
,
2011
, “
Particle Size Effect on Heat Transfer Performance in an Oscillating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
35
, pp.
724
727
.10.1016/j.expthermflusci.2011.01.007
22.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
, pp.
187
191
.10.1021/i160003a005
23.
Maxwell
,
J. C.
,
1904
,
A Treatise on Electricity and Magnetism
,
2nd ed.
,
Oxford University Press
,
Cambridge, UK
.
24.
Jang
,
S. P.
, and
Choi
,
S. U. S.
,
2004
, “
The Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
,
84
, pp.
4316
4318
.10.1063/1.1756684
25.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
, pp.
577
588
.10.1007/s11051-004-3170-5
26.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
, pp.
4410
4428
.10.1016/j.ijheatmasstransfer.2011.04.048
27.
Shao
,
W.
, and
Zhang
,
Y.
,
2011
, “
Thermally-Induced Oscillatory Flow and Heat Transfer in a U-Shaped Minichannel
,”
J. Enhanced Heat Transfer
,
18
(
3
), pp.
177
190
.10.1615/JEnhHeatTransf.v18.i3.10
28.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Ganic
,
E. N.
,
1985
,
Handbook of Heat Transfer Fundamentals
,
2nd ed.
,
McGraw-Hill
,
New York
.
29.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
B.
,
2005
,
Convective Heat Transfer
,
4th ed.
,
McGraw-Hill
,
New York
, Chap. 8.
30.
Koo
,
J.
, and
Kleinstreuer
,
C.
,
2004
, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
,
6
, pp.
577
588
.10.1007/s11051-004-3170-5
31.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Experimental Determination of Thermal Conductivity of Three Nanofluids and Development of New Correlations
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4675
4682
.10.1016/j.ijheatmasstransfer.2009.06.027
You do not currently have access to this content.