Potted electronics are becoming more common in precision-guided smart munitions designs due to the requirements for miniaturization and structural-robustness. In most of these applications, the potted electronics are inactive for most of their lifetime and may be stored without environmental (temperature and humidity) controls for up to 20 yr. The uncontrolled environment for smart munitions however makes the thermal management task especially difficult due to the coefficient of thermal expansion (CTE) mismatch that can exist between the potting material and the electronic components. In this paper, we will do the following: (1) present a methodology being developed for reducing the thermal stresses to the potted electronics used in uncontrolled environments by encapsulating the circuit board assembly (CBA) with a thin polymer layer which has been precisely formed to conform to the imprecisely shaped, as-populated, CBA. The protective polymer layer will be both flexible and soft enough to protect the CBA components from damage caused by thermal expansion mismatches, but not degrade the structural support that the potting provides during high-g force projectile launches, (2) discuss how the protective polymer layer methodology can also be used to lessen in-circuit board crosstalk, improve shielding from external RF interference, control tin-whisker growth, and enhance moisture barrier properties and thermal management for CBAs, and (3) demonstrate how to improve the smart munitions survivability under extreme high-g applications through the use of syntactic foams and material characterization before and after accelerated temperature-cycling and thermal-aging tests.

References

References
1.
Chao
,
N. H.
,
Cordes
,
J.
,
Carlucci
,
D.
,
DeAngelis
,
M.
, and
Lee
,
J.
,
2011
The Use of Potting Materials for Electronic-Package Survivability in Smart Munitions
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041003
.10.1115/1.4005375
2.
Wu
,
J.
,
Pike
,
R. T.
,
Wong
,
C. P.
,
Kim
,
N. P.
, and
Tanielian
,
M. H.
,
2000
, “
Evaluation and Characterization of Reliable Non-Hermetic Conformal Coatings for Microelectromechanical System (MEMS) Device Encapsulation
,”
IEEE Trans. Adv. Packag.
,
23
(
4
), pp.
721
728
.10.1109/6040.861556
3.
Hildreth
,
O.
, and
Wong
,
C. P.
,
2009
, “
Improved Method to Evaluate the Adhesion Properties of Thin Film Conformal Coatings
,” IEEE 59th Electronic Components and Technology Conference (
ECTC 2009
), San Diego, CA, May 26–29.10.1109/ECTC.2009.5074305
4.
Medgyes
,
B. K.
, and
Ripka
,
G.
,
2007
, “
Qualifying Methods of Conformal Coatings Used on Assembled Printed Circuit Boards
,”
30th IEEE International Spring Seminar on Electronics Technology
, Cluj-Napoca, Romania, May 9–13.10.1109/ISSE.2007.4432894
5.
Neidigk
,
M. A.
, and
Shen
,
Y. L.
,
2009
, “
Nonlinear Viscoelastic Finite Element Analysis of Physical Aging in an Encapsulated Transformer
,”
ASME J. Electron. Packag.
,
131
, p.
011003
.10.1115/1.3068298
6.
Spratt
,
J. P.
,
Aghara
,
S.
,
Fu
,
B.
,
Lichtenhan
,
J. D.
, and
Leadon
,
R.
,
2005
, “
A Conformal Coating for Shielding Against Naturally Occurring Thermal Neutrons
,”
IEEE Trans. Nucl. Sci.
,
52
(
6
), pp.
2340
2344
.10.1109/TNS.2005.860752
7.
Tomlins
,
P. E.
,
2000
, “
A Method to Quantify the Surface Insulation Resistance Performance of Conformal Coatings Exposed to Different Temperature/Humidity Conditions
,” IEEE International Symposium on Electronic Materials and Packaging (
EMAP 2000
), Hong Kong, November 30–December 2.10.1109/EMAP.2000.904178
8.
Thomas
,
B. R.
,
1992
, “
Stress-Free Potting
,”
IEEE Electr. Insul. Mag. (USA)
,
8
(
6
), pp.
21
24
.10.1109/57.168888
9.
Salmon
,
E. R.
,
1988
, “
Coefficient of Thermal Expansion of Encapsulants—Is It Always a Constant?
,”
IEEE Electr. Insul. Mag. (USA)
,
4
(
5
), pp.
26
28
.10.1109/57.7999
10.
Baylakoglu
, I
.
,
Hillman
,
C.
, and
Pecht
,
M.
,
2003
, “
Characterization of Some Commercial Thermally-Cured Potting Materials
,”
International IEEE Conference on the Business of Electronic Product Reliability and Liability
, Hong Kong, January 15–17.
11.
Chung
,
D. D. L.
,
2001
, “
Polymer-Matrix Composites for Microelectronics
,”
Applied Materials Science: Applications of Engineering Materials in Structural, Electronics, Thermal, and Other Industries
, Deborah D. L. Chung, ed., CRC Press, Boca Raton, FL, Chap. 3.10.1201/9781420040975.ch3
12.
Obitz
,
D. L.
,
2005
, “
Conformal Coating Testing at Vendor Level
,” Conformal Coating Task Group, Report No. IPC-CC 830.
13.
Chao
,
N. H.
,
Dispenza
,
J. A.
, and
DeAngelis
,
M. E.
, “
Protective Layering Process for Circuit Boards
,” US Patent Pending, No. 13/682,980.
14.
Chao
,
N. H.
,
Dispenza
,
J. A.
, and
DeAngelis
,
M. E.
,
2012
, “
Encapsulating Protective Layers for Enhancing Survivability of Circuit Board Assemblies in Harsh and Extreme Environment
,”
ASME International Mechanical Engineering Congress & Exposition (IMECE 2012), Houston, TX, November 9–15, ASME Paper No. IMECE2012-85959
.
15.
IDES Prospector
, “
A Material Properties Database
,” http://prospector.ides.com
16.
abaqus, version 6.11, Analysis User's Manual, Dassault Systèmes, Waltham, MA.
17.
Leach
,
R. D.
, and
Alexander
,
M. B.
,
1995
, “
Electronic Systems Failures and Anomalies Attributed to EMI
,” NASA Report No. 1374.
18.
Chung
,
D. D. L.
,
2000
, “
Materials for Electromagnetic Interference Shielding
,”
J. Mater. Eng. Perform.
,
9
(
3
), pp.
350
354
.10.1361/105994900770346042
19.
Hannafin
,
J.
,
2002
, “
A Novel Approach to Thermal Management and EMI Shielding Via a Metallic Conformal Coating on a Plastic Housing
,” Proceeding of the SMTA/IMAPS Conference and Exhibition on Telecom Hardware Solutions, Plano, TX, May 15–16.
20.
Erbas
,
C.
, and
Kent
,
S.
,
2003
, “
Shielding Effectiveness of a Rectangular Cavity With Aperture Between 1–3 GHz
,” IEEE International Symposium on Electromagnetic Compatibility (
EMC'03
), Istanbul, Turkey, May 11–16.10.1109/ICSMC2.2003.1428261
21.
McMillan
,
T.
,
2008
, “
Using Conductive Plastic for EMI Cover Shielding
,” IEEE International Symposium on Electromagnetic Compatibility (
EMC 2008
), Detroit, MI, August 18–22.10.1109/ISEMC.2008.4652115
22.
Karim
,
N.
,
Mao
,
J.
, and
Fan
,
J.
,
2010
, “
Improving Electromagnetic Compatibility Performance of Packages and SiP Modules Using a Conformal Shielding Solution
,” 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility (
APEMC
), Beijing, China, April 12–16.10.1109/APEMC.2010.5475724
23.
NASA Tin Whisker (and Other Metal Whisker) Homepage
, http://nepp.nasa.gov/whisker/index.html
24.
Boguslavsky
, I
.
,
Bush
,
P.
,
Kam-Lum
,
E.
,
Kwoka
,
M.
,
McCullen
,
J.
,
Spalding
,
K.
,
Vol
,
N.
, and
Willaims
,
M.
,
2003
, “
NEMI Tin Whisker Test Method Standards
,”
The Proceedings of the SMTA International Conference
, Chicago, IL, September 21–25.
25.
Woodrow
,
T. A.
,
2005
, “
Evaluation of Conformal Coating as a Tin Whisker Mitigation Strategy
,”
IPC/JEDEC 8th International Conference on Lead-Free Electronic Components and Assemblies
, San Jose, CA, April 18–20.
26.
Woodrow
,
T. A.
, and
Ledbury
,
E. A.
,
2006
, “
Evaluation of Conformal Coating as a Tin Whisker Mitigation Strategy, Part II
,”
Proceedings of SMTA Internal Conference
, Rosemont, IL, September 24–28.
27.
Sood
,
B.
,
Osterman
,
M.
, and
Pecht
,
M.
,
2011
, “
Tin Whisker Analysis of Toyota's Electronic Throttle Controls
,”
Circuit World
,
37
, pp.
4
9
.10.1108/03056121111155611
28.
Panashchenko
,
L.
,
2012
, “The Art of Metal Whisker Appreciation: A Practical Guide for Electronics Professionals,” IPC Tin Whisker Conference, Fort Worth, TX, April 17–19.
29.
Rohwer
,
L.
,
2012
, “
Tin Whisker Mitigation
,” Joint DOD/DOE Munitions Program, Sandia National Laboratories, Albuquerque, NM, May 2–3.
30.
Oshman
,
C.
,
Shi
,
B.
,
Li
,
C.
,
Yang
,
R.
,
Lee
,
Y. C.
,
Peterson
,
G. P.
, and
Bright
,
V. M.
,
2011
, “
The Development of Polymer-Based Flat Heat Pipes
,”
J. Microelectromech. Syst.
,
20
(
2
), pp.
410
417
.10.1109/JMEMS.2011.2107885
31.
Lee
,
Y. C.
, Bright, V., Yang, R., George, S., Li, C., Peterson, G. P., and Rawal, S. P.,
2011
, “
Flexible Thermal Ground Plane With Micro/Nano-Scale Wicking Structure
,” DARPA TMT Review, December 1.
32.
Oshman
,
C.
,
Li
,
Q.
,
Liew
,
L.
,
Yang
,
R.
,
Bright
,
V.
, and
Lee
,
Y. C.
,
2012
, “
Flat Flexible Polymer Heat Pipes
,”
J. Micromech. Microeng.
,
23
, p.
015001
.10.1088/0960-1317/23/1/015001
33.
Gupta
,
N.
, and
Nagomy
,
R.
,
2006
, “
On the Tensile Properties of Glass Microballoon-Epoxy Resin Syntactic Foams
,”
J. Appl. Polym. Sci.
,
102
, pp.
1254
1261
.10.1002/app.23548
34.
Ozawa
,
Y.
,
Watanabe
,
M.
,
Kikuchi
,
T.
, and
Ishiwatari
,
H.
,
2010
, “
Mechanical and Thermal Properties of Composite Material System Reinforced With Micro Glass Balloons
,”
IOP Conf. Ser: Mater. Sci. Eng.
,
10
, p.
012094
.10.1088/1757-899X/10/1/012094
35.
Quesenberry
,
M. J.
,
Madison
,
P. H.
, and
Jensen
,
R. E.
,
2003
, “
Characterization of Low Density Glass Filled Epoxies
,” Army Research Laboratory. Aberdeen Proving Ground, MD, Report No. ARL-TR-2938.
36.
3M Scotchlite Glass Bubbles K Series and S Series—Product Information
, 3M, St. Paul, MN.
37.
STYCAST 1090/Catalyst 9, Technical Data Sheet, Henkel
, Shanghai.
38.
“JESD22-A118–Accelerated Moisture Resistance—Unbiased Highly Accelerated Stress Test (HAST),” JEDEC Solid State Technology Association, March 2011
.
39.
Teverovsky
,
A.
,
2002
, “
Moisture Diffusion in Molding Compounds and Quality Assurance of PEMs for Space Applications
,” Goddard Operations, NASA. December.
40.
Teverovsky
,
A.
, and
Sahu
,
K.
,
2003
, “
PEM-INST-001: Instructions for Plastic Encapsulated Microcircuit (PEM) Selection, Screening, and Qualification
,” NASA/TP.
41.
Denson
,
W.
,
Farrell
,
J.
, and
Nicholls
,
D.
,
1996
, “
Reliable Application of Plastic Encapsulated Microcircuits
,” 4th Annual Commercial and Plastic Components in Military Applications Workshop, Indianapolis, IN, November 15–16, Reliability Analysis Center, Rome, NY.
42.
ALCHEMIX® PU&301 data sheet, Alchemie
, Kineton, UK.
43.
Arathane 5753-A/B(LV) data sheet, Huntsman
LLC, Danbury, CT.
44.
Mates
,
S.
,
Forster
,
A.
, and
Haynes
,
A.
, 2012, private communication.
You do not currently have access to this content.