On-chip two-phase cooling of parallel pseudo-CPUs integrated into a liquid pumped cooling cycle is modeled and experimentally verified versus a prototype test loop. The system's dynamic operation is studied since the heat dissipated by microprocessors is continuously changing during their operation and critical heat flux (CHF) conditions in the microevaporator must be avoided by flow control of the pump speed during heat load disturbances. The purpose here is to cool down multiple microprocessors in parallel and their auxiliary electronics (memories, dc/dc converters, etc.) to emulate datacenter servers with multiple CPUs. The dynamic simulation code was benchmarked using the test results obtained in an experimental facility consisting of a liquid pumped cooling cycle assembled in a test loop with two parallel microevaporators, which were evaluated under steady-state and transient conditions of balanced and unbalanced heat fluxes on the two pseudochips. The errors in the model's predictions of mean chip temperature and mixed exit vapor quality at steady state remained within ±10%. Transient comparisons showed that the trends and the time constants were satisfactorily respected. A case study considering four microprocessors cooled in parallel flow was then simulated for different levels of heat flux in the microprocessors (40, 30, 20, and 10 W cm−2), which showed the robustness of the predictive-corrective solver used. For a desired mixed vapor exit quality of 30%, at an inlet pressure and subcooling of 1600 kPa and 3 K, the resulting distribution of mass flow rate in the microevaporators was, respectively, 2.6, 2.9, 4.2, and 6.4 kg h−1 (mass fluxes of 47, 53, 76 and 116 kg m−2 s−1) and yielded approximately uniform chip temperatures (maximum variation of 2.6, 2, 1.7, and 0.7 K). The vapor quality and maximum chip temperature remained below the critical limits during both transient and steady-state regimes.

References

References
1.
Patel
,
C. D.
,
2003
, “
A Vision of Energy Aware Computing From Chips to Data Centers
,”
The International Symposium on Micro-Mechanical Engineering
,
Tsuchiura and Tsukuba, Japan
, December 1–3, Paper No. ISMME2003-K15.
2.
Lamaison
,
N.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2011
, “
Efficiency Improvements of a Thermal Power Plant by Making Use of the Waste Heat of Large Datacenters Using Two-Phase On-Chip Cooling
,” World Engineers Convention, Geneva, Switzerland, September 4–8.
3.
Marcinichen
,
J. B.
,
Thome
,
J. R.
and
Michel
,
B.
,
2011
, “
Cooling of Microprocessors With Micro-Evaporation: A Novel Two-Phase Cooling Cycle
,”
Int. J. Refrigeration
,
33
, pp.
1264
1276
.10.1016/j.ijrefrig.2010.06.008
4.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
,
Lamaison
,
N.
, and
Thome
,
J. R.
,
2013
, “
Advances in Electronics Cooling
,”
Int. J. Heat Transfer Eng.
,
34
(
5–6
), pp.
434
446
.10.1080/01457632.2012.721316
5.
Zhou
,
R.
,
Zhang
,
T.
,
Catano
,
J.
,
Wen
,
J. T.
,
Michna
,
G. J.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2010
, “
The Steady State Modeling and Optimization of a Refrigeration System for High Heat Flux Removal
,”
Appl. Therm. Eng.
,
30
, pp.
2347
2356
.10.1016/j.applthermaleng.2010.05.023
6.
Marcinichen
,
J. B.
,
Olivier
,
J. A.
,
Oliveira
,
V.
, and
Thome
,
J. R.
,
2011
, “
A Review of On-Chip Micro-Evaporation: Experimental Evaluation of Liquid Pumping and Vapor Compression Driven Cooling Systems and Control
,”
Int. J. Appl. Energy
,
92
, pp.
147
161
.10.1016/j.apenergy.2011.10.030
7.
Costa-Patry
,
E.
, and
Thome
,
J. R.
,
2013
, “
Flow Pattern-Based Flow Boiling Heat Transfer Model for Microchannels
,”
Int. J. Refrigeration
,
36
(
2
), pp.
414
420
.10.1016/j.ijrefrig.2012.12.006
8.
Revellin
,
R.
, and
Thome
,
J. R.
,
2007
, “
Adiabatic Two-Phase Frictional Pressure Drops in Microchannels
,”
Exp. Therm. Fluid Sci.
,
31
, pp.
673
685
.10.1016/j.expthermflusci.2006.07.001
9.
Ribatski
,
G.
,
Wojtan
,
L.
, and
Thome
,
J. R.
,
2006
, “
An Analysis of Experimental Data and Prediction Methods for Two-Phase Frictional Pressure Drop and Flow Boiling Heat Transfer in Microscale Channels
,”
Exp. Therm. Fluid. Sci.
,
31
, pp.
1
19
.10.1016/j.expthermflusci.2006.01.006
10.
Agostini
,
B.
,
Revellin
,
R.
,
Thome
,
J. R.
,
Fabbri
,
M.
,
Michel
,
B.
,
Calmi
,
D.
, and
Kloter
,
U.
,
2008
, “
High Heat Flux Flow Boiling in Silicon Multi-Microchannels—Part III: Saturated Critical Heat Flux of R236fa and Two-Phase Pressure Drops
,”
Int. J. Heat Mass Transfer
,
51
, pp.
5426
5442
.10.1016/j.ijheatmasstransfer.2008.03.005
11.
Bertsch
,
S. S.
,
Groll
,
E.
, and
Garimella
,
S. V.
,
2009
, “
A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels
,”
Int. J. Heat Mass Transfer
,
52
, pp.
2110
2118
.10.1016/j.ijheatmasstransfer.2008.10.022
12.
Cooper
,
M. G.
,
1994
, “
Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
, pp.
157
239
.10.1016/S0065-2717(08)70205-3
13.
Lemmon
,
E.
,
Huber
,
M.
, and
McLinden
,
M.
, eds.,
2007
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
,”
S.R.D. National Institute of Standards and Technology and Program
,
Gaithersburg
, MD.
14.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Properties
,”
Adv. Heat Transfer
,
6
, pp.
503
564
.10.1016/S0065-2717(08)70153-9
15.
Cicchitti
,
A.
,
Lombardi
,
C.
,
Silvestri
,
M.
,
Soldaini
,
G.
, and
Zavattarelli
,
R.
,
1960
, “
Two-Phase Cooling Experiments—Pressure Drop, Heat Transfer and Burnout Measurements
,”
Energy Nucl.
,
7
, pp.
407
425
.
16.
Costa-Patry
,
E.
,
2011
,
Cooling High Heat Flux Micro-Electronic Systems Using Refrigerants in High Aspect Ratio Multi-Microchannel Evaporators
,” Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Lausanne, France.
17.
Idel'cik
,
I. E.
,
1999
,
Memento des pertes de charge
,
Eyrolles
,
Paris
.
18.
Collier
,
J. G.
, and
Thome
,
J. R.
,
1994
,
Convective Boiling and Condensation
,
3rd ed.
,
Oxford University Press
,
Oxford, UK
.
19.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
, London.
20.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
21.
Ong
,
C. L.
, and
Thome
,
J. R.
,
2011
, “
Macro-to-Microchannel Transition in Two-Phase Flow: Part 2—Flow Boiling Heat Transfer and Critical Heat Flux
,”
Exp. Therm. Fluid Sci.
,
35
(
6
), pp.
873
886
.10.1016/j.expthermflusci.2010.12.003
22.
Olivier
,
J. A.
,
Marcinichen
,
J. B.
,
Bruch
,
A.
, and
Thome
,
J. R.
,
2011
, “
Green Cooling of High Performance Microprocessors: Parametric Study Between Flow Boiling and Water Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(4),
p
. 041003.10.1115/1.4004435
23.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergmann
,
T. L.
, and
Lavine
A. S.
,
Fundamentals of Heat and Mass Transfer
,
6th ed.
,
John Wiley & Sons
,
New York
.
24.
Wu
,
D.
,
Marcinichen
,
J. B.
, and
Thome
,
J. R.
,
2013
, “
Experimental Evaluation of Hybrid Two-Phase Multi-Microchannel Cooling and Heat Recovery System Driven by Liquid Pump and Vapor Compressor
,”
Int. J. Refrigeration
,
36
(
2
), pp.
375
389
.10.1016/j.ijrefrig.2012.11.011
25.
Radhakrishnan
,
K.
, and
Hindmarsh
,
A. C.
,
1993
, “
Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations
,” Lawrence Livermore National Laboratory Report No. UCRL-ID-113855, NASA Reference Publication 1327.
You do not currently have access to this content.