This paper introduces a methodology for developing a reduced order model, using proper orthogonal decomposition (POD), to predict the IT rack's inlet temperature distribution within a raised floor air-cooled data center. The method used in this paper uses a limited set of computational fluid dynamics data at different useful IT levels and tile airflow fractions. The model was able to reconstruct these datasets to with 0.16 °C rms error and interpolate successfully for alternative configurations that were not included in the original dataset. The reduced order model can produce the temperature distribution in the data center in a fraction of a second on a standard personal computer. Several practical IT load placement options in open-aisle, air-cooled data centers, based on either geometrical traits of the data center, a prior physics-based knowledge of the airflow and temperature patterns or measurements that are easily obtainable during operation, are considered. The outcome of this work is the development of a robust set of guidelines that facilitate the energy efficient placement of the IT load amongst the operating servers in the data center. This work found that a robust approach was to use real-time temperature measurements at the inlet of the racks to remove the unnecessary IT load from the servers with the warmest inlet temperature. This strategy shows superior performance to the other strategies studied. The study considered the holistic optimization of the data center and cooling infrastructure for a range of data center IT utilization levels. The results showed that allowing for significant reductions in the supply air flow rate proved superior to providing a higher supply air temperature to meet the IT equipment's inlet air temperature constraint.

References

References
1.
United States Environmental Protection Agency
,
2007
, “
Report to Congress on Data Center Energy Efficiency
,” Public Law 109-431.
2.
Salim
,
M.
, and
Tozer
,
R.
,
2010
, “
Data Centers' Energy Auditing and Benchmarking-Progress Update
,”
ASHRAE Trans.
,
116
(
1
), pp.
109
117
.
3.
Koomey
,
J.
,
2011
, “
Growth in Data Center Electricity Use 2005 to 2010
,”
A report by Analytical Press, completed at the request of The New York Times
.
4.
ASHRAE
,
2011
, “
2011 Thermal Guidelines for Data Processing Environments—Expanded Data Center Classes and Usage Guidance
,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA.
5.
Lui
,
Y.
,
2010
, “
Waterside and Airside Economizers Design Considerations for Data Center Facilities
,”
ASHRAE Trans.
,
116
(
1
), pp.
98
108
.
6.
Schmidt
,
R.
,
2004
, “
Thermal Profile of a High-Density Data Center—Methodology to Thermally Characterize a Data Center
,”
ASHRAE Trans.
,
110
(
2
), pp.
635
642
.
7.
Schmidt
,
R.
,
Cruz
,
E.
, and
Iyengar
,
M.
,
2005
, “
Challenges of Data Center Thermal Management
,”
IBM J. Res. Dev.
,
49
, pp.
709
723
.10.1147/rd.494.0709
8.
ASHRAE
,
2008
, “
High Density Data Centers: Case Studies and Best Practices
,” American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA.
9.
Shrivastava
,
S.
,
Iyengar
,
M.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
Vangilder
,
J.
,
2006
, “
Experimental-Numerical Comparison for a High Density Data Center: Hot Spot Heat Fluxes in Excess of 500 W/ft2
,” Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (
ITHERM ’06
),
San Diego
, CA, May 30–June 2, pp. 402–411.10.1109/ITHERM.2006.1645371
10.
Patel
,
C.
,
Bash
,
C.
,
Belady
,
L.
,
Stahl
,
L.
, and
Sullivan
,
D.
,
2001
, “
Computational Fluid Dynamics Modeling of High Compute Density Data Centers to Assure System Inlet Specifications
,”
Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition (IPACK ’01)
,
Kauai
, HI, July 8–13, ASME Paper No. IPACK2001-15622.
11.
Patel
,
C.
,
Sharma
,
C.
,
Bash
,
C.
, and
Beitelmal
,
A.
,
2002
, “
Thermal Considerations in Cooling Large Scale High Compute Density Data Centers
,”
Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2002
), San Diego, CA, May 30–June 1, pp.
767
776
.10.1109/ITHERM.2002.1012532
12.
Abdelmaksoud
,
W.
,
Dang
,
T. Q.
,
Khalifa
,
H. E.
,
Elhadidi
,
B.
,
Schmidt
,
R.
, and
Iyengar
,
M.
,
2010
, “
Experimental and Computational Study of Perforated Floor Tile in Data Centers
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Las Vegas
, NV, June 2–5.
13.
Abdelmaksoud
,
W.
,
Dang
,
T. Q.
,
Khalifa
,
H. E.
,
Elhadidi
,
B.
,
Schmidt
,
R.
, and
Iyengar
,
M.
,
2010
, “
Improved CFD Modeling of a Small Data Center Test Cell
,” 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
Las Vegas
, NV, June 2–5.10.1109/ITHERM.2010.5501425
14.
Iyengar
,
M.
, and
Schmidt
,
R.
,
2007
, “
Analytical Modeling of Thermodynamic Characterization of Data Center Cooling Systems
,”
ASME J. Electron. Packag.
,
131
, p.
021009
.10.1115/1.3103952
15.
Hellmer
,
B.
,
2010
, “
Consumption Analysis of Teleco and Data Center Cooling and Humidification Options
,”
ASHRAE Trans.
,
116
(
1
), pp.
118
133
.
16.
Demetriou
,
D. W.
,
Khalifa
,
H. E.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2011
, “
Development and Experimental Validation of a Thermo-Hydraulic Model for Data Centers
,”
HVAC&R Res.
,
17
(
4
), pp.
540
555
.10.1080/10789669.2011.555493
17.
Walsh
,
E.
,
Breen
,
T.
,
Punch
,
J.
,
Shah
,
A.
, and
Bash
,
C.
,
2010
, “
From Chip to Cooling Tower Data Center Modeling: Part I Influence of Server Inlet Temperature and Temperature Rise Across Cabinet
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Las Vegas
, NV, June 2–5.10.1109/ITHERM.2010.5501421
18.
Walsh
,
E.
,
Breen
,
T.
,
Punch
,
J.
,
Shah
,
A.
, and
Bash
,
C.
,
2010
, “
From Chip to Cooling Tower Data Center Modeling: Part II Influence of Chip Temperature Control Philosophy
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
),
Las Vegas
, NV, June 2–5.10.1109/ITHERM.2010.5501422
19.
VanGilder
,
J.
,
Zhang
,
X.
, and
Shrivastava
,
S.
,
2007
, “
Partially Decoupled Aisle Method for Estimating Rack Cooling Performance in Near-Real Time
,”
Proceedings of ASME InterPACK
,
Vancouver
,
BC
,
Canada
,
July 8–12
,
ASME
Paper No. IPACK2007-33447, pp. 781–789.10.1115/IPACK2007-33447
20.
Shrivastava
,
S.
,
2008
, Cooling Analysis of Data Centers: CFD Modeling and Real-Time Calculators, Ph.D. thesis, Binghamton University, Binghamton, NY.
21.
Healey
,
C.
,
VanGilder
,
J.
,
Sheffer
,
Z.
, and
Zhang
,
X.
,
2011
, “
Potential-Flow Modeling for Data Center Applications
,”
Proceedings of ASME InterPACK
,
Portland
,
OR
, July 6–8,
ASME
Paper No. IPACK2011-52136, pp. 527–534.10.1115/IPACK2011-52136
22.
Toulouse
,
M.
,
Doljac
,
G.
,
Carey
, V
.
, and
Bash
,
C.
,
2009
, “
Exploration of a Potential-Flow-Based Compact Model of Air-Flow Transport in Data Centers
,”
ASME 2009 International Mechanical Engineering Congress and Exposition (IMECE)
,
Orlando
,
FL
, November 13–19,
ASME
Paper No. IMECE2009-10806, pp. 41–50.10.1115/IMECE2009-10806
23.
Yarlanki
,
S.
,
Das
,
R.
,
Hamann
,
H.
,
Lopez
, V
.
, and
Stepanchuk
,
A.
,
2011
, “
Employing Thermal Zones for Energy Optimization in Data Centers
,”
Proceedings of ASME InterPACK
,
Portland
,
OR
, July 6–8,
ASME
Paper No. IPACK2011-52234, pp. 645–652.10.1115/IPACK2011-52234
24.
Lopez
, V
.
, and
Hamann
,
H.
,
2011
, “
A Numerical Technique for the Approximation of Thermal Zones
,”
Proceedings of ASME InterPACK
,
Portland
,
OR
, July 6–8,
ASME
Paper No. IPACK2011-52213, pp. 637–644.10.1115/IPACK2011-52213
25.
Tang
,
Q.
,
Mukherjee
,
T.
,
Gupta
,
S. K. S.
, and
Crayton
,
P.
,
2006
, “
Sensor-Based Fast Thermal Evaluation Model for Energy Efficient High-Performance Datacenters
,”
4th International Conference on Intelligent Sensing and Information Processing
(
ICISIP 2006
),
Bangalore
,
India
, December 15–18, pp.
203
208
.10.1109/ICISIP.2006.4286097
26.
Moore
,
J.
,
Chase
,
J. S.
, and
Ranganathan
,
P.
,
2006b
, “
Weatherman: Automated, Online and Predictive Thermal Mapping and Management for Data Centers
,”
IEEE International Conference on Autonomic Computing
(
ICAC ’06
),
Dublin
,
Ireland
,
June 12–16
, pp.
155
164
.10.1109/ICAC.2006.1662394
27.
Moore
,
J.
,
Chase
,
J.
, and
Ranganathan
,
P.
,
2006a
, “
ConSil: Low-Cost Thermal Mapping of Data Centers
,”
Proceedings of SysML
,
Saint Malo
,
France
, June 27.
28.
Song
,
Z.
,
Murray
,
B.
, and
Sammakia
,
B.
,
2011
, “
Multivariate Prediction of Airflow and Temperature Distributions Using Artificial Neural Networks
,”
Proceedings of ASME InterPACK
,
Portland
,
OR
, July 6–8,
ASME
Paper No. IPACK2011-52167, pp. 595–604.10.1115/IPACK2011-52167
29.
Elhadidi
,
B.
, and
Khalifa
,
H. E.
,
2005
, “
Application of Proper Orthogonal Decomposition to Indoor Airflows
,”
ASHRAE Trans.
,
111
(
1
), pp.
625
634
.
30.
Khalifa
,
H. E.
,
Elhadidi
,
B.
, and
Dannenhoffer
,
J.
,
2007
, “
Efficient Coupling of Multizone and CFD Indoor Flow Models Through Proper Orthogonal Decomposition
,”
ASHRAE Trans.
,
113
(
1
), pp.
282
289
.
31.
Samadiani
,
E.
,
Joshi
,
Y.
,
Hamann
,
H.
,
Iyengar
,
M.
,
Kamalsy
,
S.
, and
Lacey
,
J.
,
2009
, “
Reduced Order Thermal Modeling of Data Centers Via Distributed Sensor Data
,”
Proceedings of ASME InterPACK
,
San Francisco
,
CA
, July 19–23,
ASME
Paper No. InterPACK2009-89187, pp. 807–814.10.1115/InterPACK2009-89187
32.
Sharma
,
R.
,
Bash
,
C.
,
Patel
,
C.
,
Friedrich
,
R.
, and
Chase
,
J.
,
2005
, “
Balance of Power: Dynamic Thermal Management for Internet Data Centers
,”
Internet Comput.
,
9
(
1
), pp.
42
49
.10.1109/MIC.2005.10
33.
Moore
,
J.
,
Chase
,
J.
,
Ranganathan
,
P.
, and
Sharma
,
R.
,
2005
, “
Making Scheduling ‘Cool’: Temperature-Aware Workload Placement in Data Centers
,”
Proceedings of USENIX Annual Technical Conference
,
Anaheim
,
CA
,
April 10–15
, pp.
61
75
.
34.
Tang
,
Q.
,
Gupta
,
S. K. S.
, and
Varsamopoulou
,
G.
,
2007
, “
Thermal-Aware Task Scheduling for Data Centers Through Minimizing Heat Recirculation
,”
IEEE International Conference on Cluster Computing
,
Austin
,
TX
, September 17–21, pp. 129–138.10.1109/CLUSTR.2007.4629225
35.
Tang
,
Q.
,
2009
, “
Thermally-Aware Scheduling in Environmentally Coupled Cyber-Physical Distributed Systems
,” Ph.D. thesis, Arizona State University, Tempe, AZ.
36.
Moore
,
J.
,
2005
, “
Automated Cost-Aware Data Center Management
,” Ph.D. thesis, Duke University, Durham, NC.
37.
Tang
,
Q.
,
Gupta
,
S.
, and
Varsamopoulos
,
G.
,
2008
, “
Energy-Efficient Thermal Aware Task Scheduling for Homogenous High-Performance Computing Data Centers: A Cyber-Physical Approach
,”
IEEE Trans. Parallel Distrib. Sys.
,
19
(
11
), pp.
1458
1472
.10.1109/TPDS.2008.111
38.
Mukherjee
,
T.
,
Banerjee
,
A.
,
Varsamopoulos
,
G.
, and
Gupta
,
S.
,
2009
, “
Spatio-Temporal Thermal-Aware Job Scheduling to Minimize Energy Consumption in Virtualized Heterogeneous Data Centers
,”
Comput. Netw.
,
53
(
17
), pp.
2888
2904
.10.1016/j.comnet.2009.06.008
39.
Demetriou
,
D. W.
, and
Khalifa
,
H. E.
,
2011
, “
Evaluation of a Data Center Recirculation Non-Uniformity Metric Using Computational Fluid Dynamics
,”
Proceedings of ASME InterPACK
,
Portland
,
OR
, July 6–8,
ASME
Paper No. IPACK2011–52005, pp. 405–414.10.1115/IPACK2011-52005
40.
Khalifa
,
H. E.
, and
Demetriou
,
D. W.
,
2011
, “
Energy Optimization of Air-Cooled Data Centers
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
, p.
041005
.10.1115/1.4003427
41.
Demetriou
,
D. W.
, and
Khalifa
,
H. E.
,
2011
, “
Energy Modeling of Air-Cooled Data Centers: Part I—The Optimization of Enclosed Aisle Configurations
,”
Proceedings of ASME InterPACK
,
Portland
,
OR
, July 6–8,
ASME
Paper No. IPACK2011-52003, pp. 385–394.10.1115/IPACK2011-52003
42.
Demetriou
,
D. W.
, and
Khalifa
,
H. E.
,
2011
, “
Energy Modeling of Air-Cooled Data Centers: Part II—The Effect of Recirculation on the Energy Optimization of Open-Aisle, Air-Cooled Data Centers
,”
Proceedings of ASME InterPACK
,
Portland
,
OR
, July 6–8,
ASME
Paper No. IPACK2011-52004, pp. 395–404.10.1115/IPACK2011-52004
43.
Holmes
,
P.
,
Lumley
,
J.
, and
Berkooz
,
G.
,
1996
, “
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,”
Cambridge Monographs on Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
44.
Rambo
,
J.
, and
Joshi
,
Y.
,
2005
, “
Reduced Order Modeling of Steady Turbulent Flows Using the POD
,”
Proceedings of ASME Summer Heat Transfer Conference
,
San Francisco
,
CA
, July 17–22,
ASME
Paper No. HT2005-72143, pp. 837–846.10.1115/HT2005-72143
45.
Lumley
,
J. L.
,
1981
,
“Coherent Structures in Turbulence,” Transition and Turbulence: Proceedings of the Symposium on Transition and Turbulence in Fluids, Madison, WI, October 13–15, 1980
,
Academic Press
,
New York
, pp. 215–242.
46.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures, Part 1: Coherent Structures
,”
Quarterly of Applied Mathematics
,
45
(
3
), pp.
561
571
.
47.
Rasmussen
,
N.
, and
Torell
,
W.
,
2007
, “
Data Center Projects: Establishing a Floor Plan
,” American Power Conversion White Paper No.144.
48.
Ansys Inc.
,
2010
, “
ANSYS FLUENT Theory Guide
,” Release 13.
49.
VanGilder
,
J.
, and
Zhang
,
X.
,
2008
, “
Coarse-Grid CFD: The Effect of Grid Size on Data Center Modeling
,”
ASHRAE Trans.
,
114
(
2
), pp.
166
181
.
50.
Sirovich
,
L.
, and
Everson
,
R.
,
1992
, “
Management and Analysis of Large Scientific Datasets
,”
Int. J. High Performan. Supercomput. Appl.
,
6
(
1
), pp.
50
68
.10.1177/109434209200600104
51.
Bui-Thanh
,
T.
,
Damodaran
,
M.
, and
Willcox
,
K.
,
2003
, “
Proper Orthogonal Decomposition Extensions for Parametric Applications in Transonic Aerodynamics
,”
Proceedings of 21st AIAA Applied Aerodynamics Dynamics Conference
,
Orlando
, FL, June 23–26,
AIAA
Paper No. 2003–4213.10.2514/6.2003-4213
52.
Incropera
,
F.
, and
DeWitt
,
D.
,
2002
,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
New York
.
53.
Braun
,
J. E.
,
Mitchell
,
J. W.
, and
Klein
,
S. A.
,
1987
, “
Performance and Control Characteristics of a Large Cooling System
,”
ASHRAE Trans.
,
93
(
1
), pp.
1830
1852
.
You do not currently have access to this content.