It is well known that the flow distribution in data centers can be effected by a variety of parameters such as rack and computer room air conditioning (CRAC) positions, raised-floor height, ceiling height, and percentage opening of perforated tiles. In the present paper, numerical simulations are conducted to optimize the layout of a raised-floor data center with respect to these parameters. Two different approaches have been used: parametric optimization; and a multivariable approach using response surface optimization. In the parametric optimization procedure, the data center is optimized with respect to the maximum temperature in the room. While in the multivariable approach, a cost function is constructed from all the rack inlet temperatures and is minimized. The results show that the multivariable approach is computationally economical and the optimized layout gives a better thermal performance compared to that of parametric optimization.

References

References
1.
Schmidt
,
R.
, and
Iyengar
,
M.
,
2005
, “
Effect of Data Center Layout on Rack Inlet Air Temperatures
,”
Proceedings of the ASME Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems Collocated With the ASME Heat Transfer Summer Conference
, pp.
517
525
, San Francisco, CA, July 17–22,
ASME
Paper No. IPACK2005-73385.10.1115/IPACK2005-73385
2.
Sharma
,
R. K.
,
Bash
,
C. E.
, and
Patel
,
C. D.
,
2002
, “
Dimensionless Parameters for the Evaluation of Thermal Design and Performance of Large-Scale Data Centers
,”
Proceedings of the 8th ASME/AIAA Joint Thermophysics and Heat Transfer Conference
, St. Louis, MO, June 24–26, Paper No.
AIAA
-2002-3091.10.2514/6.2002-3091
3.
Rambo
,
J.
, and
Joshi
,
Y.
,
2006
, “
Thermal Modeling of Technology Infrastructure Facilities: A Case Study of Data Centers
,”
Handbook of Numerical Heat Transfer, Vol. II
,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds.,
2nd ed.
,
Taylor and Francis, New York
, pp.
821
850
.
4.
Kang
,
S.
,
Schmidt
,
R.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
,
2001
, “
A Methodology for the Design of Perforated Tiles in a Raised Floor Data Center Using Computational Flow Analysis
,”
IEEE Trans. Compon. Packaging Technol.
,
24
(
2
), pp.
177
183
.10.1109/6144.926380
5.
Schmidt
,
R.
,
2001
, “
Effect of Data Center Characteristics on Data Processing Equipment Inlet Temperatures
,”
Proceedings of the ASME Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems Collocated With the ASME Heat Transfer Summer Conference
, pp.
1097
1106
, Kauai, HI, July 8–13, ASME Paper No. IPACK2001-15870.
6.
Patel
,
C. D.
,
Bash
,
C. E.
,
Belady
,
C.
,
Stahl
,
L.
, and
Sullivan
,
D.
,
2001
, “
Computational Fluid Dynamics Modeling of High Compute Density Data Centers to Assure System Inlet Air Specifications
,”
Proceedings of the ASME Pacific Rim International Electronics Packaging Technical Conference and Exhibition
, Kauai, HI, July 8–13, ASME Paper No. IPACK2001-15622.
7.
Rambo
,
J.
, and
Joshi
,
Y.
,
2003
, “
Physical Models in Data Centers Airflow Simulations
,”
Proceedings of the International Mechanical Engineering Congress and Exposition
, pp.
153
159
, Washington, DC, November 15–21,
ASME
Paper No. IMECE2003-41381.10.1115/IMECE2003-41381
8.
Shrivastava
,
S.
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
Iyengar
,
M.
,
2005
, “
Comparative Analysis of Different Data Center Airflow Management Configurations
,”
Proceedings of the ASME Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems Collocated With the ASME Heat Transfer Summer Conference
, pp.
329
336
, San Francisco, CA, July 17–22,
ASME
Paper No. IPACK2005-73234.10.1115/IPACK2005-73234
9.
Fakhim
,
B.
,
Behnia
,
M.
,
Armfield
,
S. W.
, and
Srinarayana
,
N.
,
2011
. “
Cooling Solutions in an Operational Data Centre: A Case Study
,”
Appl. Thermal Eng.
,
31
, pp.
2279
2291
.10.1016/j.applthermaleng.2011.03.025
10.
Iyengar
,
M.
,
Schmidt
,
R.
,
Sharma
,
R.
,
McVicker
,
G.
,
Shrivastava
,
S.
,
Shrijayantha
,
S.
,
Amemiya
,
Y.
,
Dang
,
H.
,
Chainer
,
T.
, and
Sammakia
,
B.
,
2005
, “
Thermal Characterization of Non-Raised Floor Air Cooled Data Centers Using Numerical Modeling
,”
Proceedings of the ASME Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems Collocated With the ASME Heat Transfer Summer Conference
, pp.
535
543
, San Francisco, CA, July 17–22,
ASME
Paper No. IPACK2005-73387.10.1115/IPACK2005-73387
11.
Schmidt
,
R.
, and
Cruz
,
E.
,
2004
, “
Cluster of High Powered Racks Within a Raised Floor Computer Data Center: Effects of Perforated Tiles Flow Distribution on Rack Inlet Air Temperature
,”
ASME J. Electron. Packag.
,
126
(
4
), pp.
510
518
.10.1115/1.1827266
12.
Schmidt
,
R.
,
Karki
,
K. C.
, and
Patankar
,
S. V.
,
2004
, “
Raised Floor Data Center: Perforated Tile Flow Rates for Various Tile Layouts
,”
Proceedings of the 9th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, pp.
571
578
, Las Vegas, NV, June 1–4, Paper No. ITHERM2004-1319226.10.1109/ITHERM.2004.1319226
13.
Schmidt
,
R.
,
Karki
,
K. C.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
,
2001
, “
Measurements and Predictions of the Flow Distribution Through Perforated Tiles in Raised Floor Data Centers
,”
Proceedings of the ASME Pacific Rim International Electronics Packaging Technical Conference and Exhibition
, Kauai, HI, July 8–13, ASME Paper No. IPACK2001-15728.
14.
Van Gilder
,
J. W.
, and
Schmidt
,
R.
,
2005
, “
Airflow Uniformity Through Perforated Tiles in a Raised-Floor Data Center
,”
Proceedings of the ASME Pacific Rim International Electronics Packaging Technical Conference and Exhibition
, San Francisco, CA, July 17–22,
ASME
Paper No. IPACK2005-73375.10.1115/IPACK2005-73375
15.
Radmehr
,
A.
,
Schmidt
,
R.
,
Karki
,
K. C.
, and
Patankar
,
S. V.
,
2005
, “
Distributed Leakage Flow in Raised-Floor Data Centers
,”
Proceedings of the ASME Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated With the ASME Heat Transfer Summer Conference
, pp.
401
408
, San Francisco, CA, July 17–22,
ASME
Paper No. IPACK2005-73273.10.1115/IPACK2005-73273
16.
Rambo
,
J.
, and
Joshi
,
Y.
,
2006
. “
Convective Transport Processes in Data Centers
,”
Numer. Heat Transfer, Part A
,
49
, pp.
923
945
.10.1080/10407780500496562
17.
Bhopte
,
S.
,
Agonafer
,
D.
,
Schmidt
,
R.
, and
Sammakia
,
B.
,
2006
, “
Optimization of Data Center Room Layout to Minimize Rack Inlet Air Temperature
,”
J. Electron. Packag.
,
128
, pp.
380
387
.10.1115/1.2356866
18.
Romadhon
,
R.
,
Ali
,
M.
,
Mahdzir
,
A. M.
, and
Abakr
,
Y. A.
, “
Optimization of Cooling Systems in Data Centre by Computational Fluid Dynamics Model and Simulation
,”
Proceedings of the Conference on Innovative Technologies in Intelligent Systems and Industrial Applications
, pp.
322
327
, Monash, Australia, July 25–26,
IEEE
Paper No. CITISIA2009-5224189.10.1109/CITISIA.2009.5224189
19.
Shah
,
A.
, and
Krishnan
,
N.
,
2008
. “
Optimization of Global Data Center Thermal Management Workload for Minimal Environmental and Economic Burden
,”
IEEE Trans. Compon. Packag. Technol.
,
31
, pp.
39
45
.10.1109/TCAPT.2007.906721
20.
Mukherjee
,
T.
,
Banerjee
,
A.
,
Varsamopoulos
,
G.
,
Gupta
,
K. S.
, and
Rungta
,
S.
,
2009
, “
Spatio-Temporal Thermal-Aware Job Scheduling to Minimize Energy Consumption in Virtualized Heterogeneous Data Centers
,”
Comput. Netw.
,
53
, pp.
1603
1627
.10.1016/j.comnet.2008.11.013
21.
Herrlin
,
M. K.
, and
Khankari
,
K.
,
2008
, “
Method for Optimizing Equipment Cooling Effectiveness and HVAC Cooling Costs in Telecom and Data Centers
,”
ASHRAE Trans.
,
114
(
1
), p.
17
. http://www.ancis.us/images/New_York_08_Web.pdf
22.
FloVENT v9.1, Mentor Graphics Mechanical Analysis Division, Wilsonville, OR, http://www.mentor.com/products/mechanical /products/flovent
23.
Karki
,
K. C.
,
Patankar
,
S. V.
, and
Radmehr
,
A.
,
2003
, “
Techniques for Controlling Airflow Distributions in Raised Floor Data Centers
,”
Proceedings of the ASME Pacific Rim International Electronic Packaging Technical Conference and Exhibition
, pp.
621
628
, Maui, HI, July 6–11,
ASME
Paper No. IPACK2003-35282.10.1115/IPACK2003-35282
24.
Box
,
G.
, and
Draper
,
N. R.
,
1987
,
Empirical Model-Building and Response Surfaces
,
Wiley, New York
, p.
424
.
25.
Raymond
,
H. M.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
, eds.,
2009
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiment
,
3rd ed.
,
Wiley, New York
.
26.
ASHRAE TC9.9 Mission Critical Facilities, Technology Spaces, and Electronic Equipment
,
2011
,
Thermal Guidelines for Data Processing Environments
,
American Society of Heating, Refrigeration, and Air-Conditioning Engineers, Inc
,
Atlanta, GA
.
You do not currently have access to this content.