Steady state behavior of a thermally actuated RF MEMS switch in the open and closed positions is simulated using the governing thermal and structural equations. The switch is a bridge with a length of 250 microns, a width of 50 microns, and a thickness of 1 micron, in air with a pressure of 5 kPa. Simulations are performed for two different materials: silicon and silicon nitride. Three heating configurations are used: uniformly distributed heat, concentrated heat at the center of the top surface, and concentrated heat at the sides of the top surface. The steady state results show that the displacement at the center of the bridge is a linear function of the heat addition. This can be used to define a switch efficiency coefficient η*. In the uniformly distributed heat configuration, for a specific center displacement, a closed switch needs less heat at the top than an open switch. Adding concentrated heat at the center of the top surface yields a larger center displacement per unit heat addition than adding heat to the sides. When the heating is changed to a concentrated heat load at the center, the required heat is an order of magnitude less than heat added to the sides. Changing the contact length shows that variation in the length of the contact results in negligible changes in required heat to achieve a given displacement.

References

References
1.
Jeong
,
S. H.
,
Nakayama
,
W.
, and
Lee
,
S. K.
,
2009
, “
Heat Switch to Control the Local Thermal Resistance Using Liquid Pillar Control
,”
Proceeding of the ASME 2009 InterPACK Conference
,
San Francisco
, CA, July 19–23,
ASME
Paper No. InterPACK2009-89368, pp.
1021
1024
.10.1115/InterPACK2009-89368
2.
Laws
,
A. D.
,
Chang
,
Y. J.
,
Bright
,
V. M.
, and
Lee
,
Y. C.
,
2008
, “
Thermal Conduction Switch for Thermal Management of Chip Scale Atomic Clocks
,”
ASME J. Electron. Packag.
,
130
, p.
021011
.10.1115/1.2912187
3.
Weiss
,
L. W.
,
Cho
,
J. H.
,
Morris
,
D. J.
,
Bahr
,
D. F.
,
Richards
,
C. D.
, and
Richards
,
R. F.
,
2006
, “
A MEMS-Based Micro Heat Engine With Integrated Thermal Switch
,”
ASME International Mechanical Engineering Congress and Exposition
,
Chicago
, IL, November 5–10,
ASME
Paper No. IMECE2006-15042, pp.
25
29
.10.1115/IMECE2006-15042
4.
Jeong
,
S. H.
,
Nakayama
,
W.
, and
Lee
,
S. K.
,
2010
, “
The Liquid Bridge Heat Switch Design With Considering the Pressure Behavior to Regulate the Thermal Resistance for the Temperature Control
,”
ASME International Mechanical Engineering Congress and Exposition
,
Vancouver, British Columbia, Canada
, November 12–18,
ASME
Paper No. IMECE2010-40336, pp.
1345
1348
.10.1115/IMECE2010-40336
5.
Benafan
,
O.
, and
Vaidyanathan
,
R.
,
2009
, “
A Shape Memory Alloy Controlled Heat Pipe Based Thermal Switch
,”
ASME International Mechanical Engineering Congress and Exposition
,
Vancouver, Lake Buena Vista
, FL, November 13–19,
ASME
Paper No. IMECE2009-11735, pp.
107
109
.10.1115/IMECE2009-11735
6.
Bulgrin
,
K. E.
,
Ju
,
Y. S.
,
Garman
,
G. P.
, and
Lavine
,
A. S.
,
2011
, “
An Investigation of a Tunable Magnetomechanical Thermal Switch
,”
ASME J. Heat Transfer
,
133
,
p
.
101401
.10.1115/1.4004166
7.
McLanahan
,
A. R.
,
Richards
,
C. D.
, and
Richards
,
R. F.
,
2011
, “
A Dielectric Liquid Contact Thermal Switch With Electrowetting Actuation
,”
J. Micromech. Microeng.
,
21
, p.
104009
.10.1088/0960-1317/21/10/104009
8.
Carmona
,
M.
,
Marco
,
S.
,
Samitier
,
J.
,
Acero
,
M. C.
,
Plaza
,
J. A.
, and
Esteve
,
J.
,
2003
, “
Modeling the Thermal Actuation in a Thermo-Pneumatic Micropump
,”
ASME J. Electron. Packag.
,
125
, pp.
527
530
.10.1115/1.1604154
9.
Rebeiz
,
G. M.
,
2003
,
RF MEMS Theory, Design, and Technology
,
Wiley Inter-Science
, Hoboken, NJ.
10.
Reid
,
J. R.
, and
Starman
,
L. A.
,
2003
, “
Simulation of Cantilever Beam Micro-Switch Pull-In and Collapse Voltages
,”
Technical Proceeding of the 2003 Nanotechnology Conference and Trade Show
, San Francisco, CA, February 23–27, Vol.
1
, pp.
432
435
.
11.
Coutu
, Jr.,
R. A.
,
Kladitis
,
P. E.
,
Starman
,
L. A.
, and
Reid
,
J. R.
,
2004
, “
A Comparison of Micro-Switch Analytic, Finite Element, and Experimental Results
,”
Sens. Actuators A
,
115
(
2–3
), pp.
252
258
.10.1016/j.sna.2004.03.019
12.
Dequenes
,
M.
,
Rotkin
,
S. V.
, and
Aluru
,
N. R.
,
2002
, “
Calculation of Pull-In Voltages for Carbon-Nanotube-Based Nanoelectromechanical Switches
,”
J. Nanotechnol.
,
13
, pp.
120
131
.10.1088/0957-4484/13/1/325
13.
Blondy
,
P.
,
Mercier
,
D.
,
Cros
,
D.
,
Guillon
,
P.
,
Rey
,
P.
,
Charvet
,
P.
,
Diem
,
B.
,
Zanchi
,
C.
,
Lapierre
,
L.
,
Sombrin
,
J.
,
Quoirin
,
J. B.
,
2001
, “
Packaged Millimeter Wave Thermal MEMS Switches
,”
31st European Microwave Conference
, London, pp.
1
4
.
14.
Blondy
,
P.
,
Cros
,
D.
,
Guillon
,
P.
,
Rey
,
P.
,
Charvet
,
P.
,
Diem
,
B.
,
Zanchi
,
C.
,
Quoirin
,
J. B.
,
2001
, “
Low Voltage High Isolation MEMS Switches
,”
Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems
, Ann Arbor, MI, September 12–14, pp.
47
49
.10.1109/SMIC.2001.942339
15.
Duong
,
Q.-H.
,
Buchaillot
,
L.
,
Collard
,
D.
,
Schmitt
,
P.
,
Lafontan
,
X.
,
Pons
,
P.
,
Flourens
,
F.
,
Pressecq
,
F.
,
2005
, “
Thermal and Electrostatic Reliability Characterization in RF MEMS Switches
,”
Microelectronics Reliability
,
Proceedings of the 16th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis
,
45
(
9–11
), pp.
1790
1793
.10.1016/j.microrel.2005.07.095
16.
Maghsoudi
,
E.
, and
Martin
,
M. J.
,
2012
, “
Scaling of Thermal Positioning in Microscale and Nanoscale Bridge Structures
,”
ASME J. Heat Transfer
,
134
(
10
), p.
102401
.10.1115/1.4006661
17.
Lee
,
J.
,
Wright
,
T. L.
,
Abel
,
M. R.
,
Sunden
,
E. O.
,
Marchenkov
,
A.
,
Graham
,
S.
, and
King
,
W. P.
,
2007
, “
Thermal Conduction From Micro-Cantilever Heaters in Partial Vacuum
,”
J. Appl. Phys.
,
101
(
1
), p.
014906
.10.1063/1.2403862
18.
Martin
,
M. J.
, and
Houston
,
B. H.
,
2009
, “
Free-Molecular Heat Transfer of Vibrating Cantilever and Bridges
,”
Phys. Fluids
,
21
, p.
017101
.10.1063/1.3055285
19.
Boley
,
B. A.
, and
Weiner
,
J. H.
,
1960
,
Theory of Thermal Stresses
,
Wiley
,
New York
.
20.
Daneshmand
,
M.
,
Fouladi
,
S.
,
Mansour
,
R. R.
,
Lisi
,
M.
, and
Tony Stajcer
,
T.
,
2009
, “
Thermally Actuated Latching RF MEMS Switch and Its Characteristics
,”
IEEE Trans. Microwave Theory Tech.
,
57
, pp.
3229
3238
.10.1109/TMTT.2009.2033866
21.
Daneshmand
,
M.
,
Yan
,
W. D.
, and
Mansour
,
R. R.
,
2007
, “
Thermally Actuated Multiport RF MEMS Switches and Their Performance in a Vacuumed Environment
,”
IEEE Trans. Microwave Theory Techn
,
57
, pp.
1229
1326
.10.1109/TMTT.2007.897740
You do not currently have access to this content.