This paper discusses the design for reliability of a wire bond structure in a power electronic module based on computational approach that integrates methods for high fidelity analysis, reduced order modeling, numerical risk analysis, and optimization. This methodology is demonstrated on a wire bond structure in a power electronic module with the aim of reducing the chance of failure due to the wire bond lift off in a power electronic module. In particular, wire bond reliability of the power module related to the thermal fatigue material degradation of aluminum wire is one of the main concerns. Understanding the performance, reliability, and robustness of wire bond is a key factor for the future development and success of the power electronic module technology. The main focus in this study is on the application of reduced order modeling techniques and the development of the associated models for fast design evaluation and analysis. The discussion is on methods for approximate response surface modeling based on interpolation techniques using Kriging and radial basis functions. The reduced order modeling approach uses prediction data for the electrothermomechanical behavior of the power module wire bond design obtained through nonlinear transient finite element simulations, in particular, for the fatigue lifetime of the aluminum wire attached to the silicon chip and the warpage (displacement) of the wire in the module. These reduced order models are used for the analysis of the effect of design uncertainties on the reliability of these advanced electronics modules. To assess the effect of uncertain design data, different methods for estimating the variation of reliability-related metrics of the wire bond model are researched and tested. Sample-based methods, such as full-scale Monte Carlo and Latin hypercube, and analytical approximate methods, such as first order second moment (FOSM) and point estimation method (PEM), are investigated, and their accuracy is compared. The optimization modeling analyzes the probabilistic nature of the reliability problem of the aluminum wire bond structures under investigation. Optimization tasks with design uncertainty are identified and solved using a particle swarm optimization algorithm. The probabilistic optimization deals with two different characteristic performance metrics of the design, the electrothermomechanical fatigue reliability of the aluminum wire attached to the chip and the thermally induced warpage of the wire in the module structure. The objective in this analysis is to ensure that the design has the required reliability and meets a number of additional requirements.

References

References
1.
Sheng
,
W. W.
, and
Colino
,
R. P.
,
2005
,
Power Electronic Modules
,
CRC
Press, Boca Raton, FL.
2.
Lu
,
H.
,
Bailey
,
C.
, and
Yin
,
C.
,
2009
, “
Design for Reliability of Power Electronics Modules
,”
Microelectron. Reliab.
,
49
, pp.
1250
1255
.10.1016/j.microrel.2009.07.055
3.
Ciappa
,
M.
,
2002
, “
Selected Failure Mechanisms of Modern Power Modules
,”
Microelectron. Reliab.
,
42
, pp.
653
667
.10.1016/S0026-2714(02)00042-2
4.
Ye
,
H.
,
Lin
,
M.
, and
Basaran
,
C.
,
2002
, “
Failure Modes and FEM Analysis of Power Electronic Packaging
,”
Finite Elem. Anal. Design
,
38
, pp.
601
612
.10.1016/S0168-874X(01)00094-4
5.
Shammas
,
N. Y. A.
,
2003
, “
Present Problems of Power Module Packaging Technology
,”
Microelectron. Reliab.
,
43
, pp.
519
527
.10.1016/S0026-2714(03)00019-2
6.
Micol
,
A.
,
Martin
,
C.
,
Dalverny
,
O.
,
Mermet-Guyennet
,
M.
, and
Karama
,
M.
,
2009
, “
Reliability of Lead-Free Solder in Power Module With Stochastic Uncertainty
,”
Microelectron. Reliab.
,
49
, pp.
631
641
.10.1016/j.microrel.2009.02.025
7.
Lu
,
H.
,
Tilford
,
T.
,
Bailey
,
C.
, and
Newcombe
,
D. R.
,
2007
, “
Lifetime Prediction for Power Electronics Module Substrate Mount-Down Solder Interconnect
,” International Symposium on High Density Packaging and Microsystem Integration (
HDP'07
), Shanghai, June 26–28.10.1109/HDP.2007.4283558
8.
Lu
,
H.
,
Loh
,
W. S.
,
Tilford
,
T.
,
Johnson
,
M.
, and
Bailey
,
C.
,
2007
, “
Reliability of Power Electronic Modules
,” ASME 2007 InterPACK Conference (IPACK2007), Vancouver, Canada, July 8–12,
ASME
Paper No. IPACK2007-33817, pp.
883
888
.10.1115/IPACK2007-33817
9.
Pietranico
,
S.
Pommier
,
S.
,
Lefebvre
,
S.
, and
Pattofatto
,
S.
,
2009
, “
Thermal Fatigue and Failure of Electronic Power Device Substrates
,”
Int. J. Fatigue
,
31
, pp.
1911
1920
.10.1016/j.ijfatigue.2009.03.011
10.
Micol
,
A.
,
Zeanh
,
A.
,
Lhommeau
,
T.
,
Azzopardi
,
S.
,
Woirgard
,
E.
,
Dalverny
,
O.
, and
Karama
,
M.
,
2009
, “
An Investigation Into the Reliability of Power Modulus Considering Baseplate Solders Thermal Fatigue in Aeronautical Applications
,”
Microelectron. Reliab.
,
49
, pp.
1370
1374
.10.1016/j.microrel.2009.06.046
11.
Bailey
,
C.
,
Lu
,
H.
, and
Newcombe
,
D. R.
,
2007
, “
Rapid Solutions for Application Specific IGBT Module Design
,”
International Exhibition and Conference for Power Electronics, Intelligent Motion and Power Quality (PCIM Europe 2007)
, Nuremberg, Germany, May 22–24.
12.
Khatir
,
Z.
, and
Lefebvre
,
S.
,
2004
, “
Boundary Element Analysis of Thermal Fatigue Effects on High Power IGBT Modules
,”
Microelectron. Reliab.
,
44
, pp.
929
938
.10.1016/j.microrel.2004.02.007
13.
Held
,
M.
,
Jacob
,
P.
,
Nicoletti
,
G.
,
Scacco
,
P.
, and
Poech
,
M. H.
,
1999
, “
Fast Power Cycling Test for Insulated Gate Bipolar Transistor Modules in Traction Application
,”
Int. J. Electron.
,
86
(
10
), pp.
1193
1204
.10.1080/002072199132743
14.
Ramminger
,
S.
,
Türkes
,
P.
, and
Wachutka
,
G.
,
1998
, “
Crack Mechanism in Wire Bonding Joints
,”
Microelectron. Reliab.
,
38
, pp.
1301
1305
.10.1016/S0026-2714(98)00141-3
15.
Ramminger
,
S.
,
Seliger
,
N.
, and
Wachutka
,
G.
,
2000
, “
Reliability Model for Al Wire Bonds Subjected to Heel Crack Failures
,”
Microelectron. Reliab.
,
40
, pp.
1521
1525
.10.1016/S0026-2714(00)00139-6
16.
Bielen
,
J.
,
Gommans
,
J. J.
, and
Theunis
,
F.
,
2006
, “
Prediction of High Cycle Fatigue in Aluminum Bond Wires: A Physics of Failure Approach Combining Experiments and Multi-Physics Simulations
,”
7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems
(
EuroSime 2006
),
Como
, Italy, April 24–26, pp. 1–7.10.1109/ESIME.2006.1644022
17.
Celnikier
,
Y.
,
Benabou
,
L.
, and
Coquery
,
G.
,
2011
, “
Investigation of Heel Crack Mechanism in Al Connections for Power Electronics Modules
,”
Microelectron. Reliab.
,
51
, pp.
965
974
.10.1016/j.microrel.2011.01.001
18.
Hager
,
C.
,
2000
, “
Lifetime Estimation of Aluminium Wire Bonds Based on Computational Plasticity
,” Ph.D. thesis, Swiss Federal Institute of Technology, Zurich.
19.
Van Driel
,
W. D.
,
Van Silfhout
,
R. B. R.
, and
Zhang
,
G. Q.
,
2008
, “
Reliability of Wirebonds in Micro-Electronic Packages
,”
Microelectron. Int.
,
25
(
2
), pp.
15
22
.10.1108/13565360810875967
20.
Meyyappan
,
K. N.
,
Hansen
,
P.
, and
Mccluskey
,
P.
,
2003
, “
Wire Flexure Fatigue Model for Asymmetric Bond Height
,”
ASME International Electronic Packaging Technical Conference and Exhibition
(
IPACK 03
),
Maui, HI
, July 6–11, ASME Paper No. IPACK2003-35136, pp.
769
776
.10.1115/IPACK2003-35136
21.
Lu
,
H.
,
Loh
,
W.
,
Bailey
,
C.
, and
Johnson
,
M.
,
2008
, “
Computer Modelling Analysis of the Globtop's Effects on Aluminium Wirebond Reliability
,”
2nd Electronic System Integration Technology Conference
(
ESTC 2008
),
Greenwich, UK
, September 1–6, pp.
1369
1374
.10.1109/ESTC.2008.4684555
22.
Khan
,
W. A.
,
Culham
,
R. R.
, and
Yovanovich
,
M. M.
,
2008
, “
Modeling of Cylindrical Pin-Fin Heat Sinks for Electronic Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
3
), pp.
536
545
.10.1109/TCAPT.2008.2002554
23.
Holman
,
J. P.
,
2010
,
Heat Transfer
,
McGraw-Hill
,
New York
.
24.
Lee
,
W. W.
,
Nguyen
,
L. T.
, and
Selvaduray
,
G. S.
,
2000
, “
Solder Joint Fatigue Models: A Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
,
40
, pp.
231
244
.10.1016/S0026-2714(99)00061-X
25.
Ansys Inc.
, “
ANSYS – Simulation Driven Product Development
,” www.ansys.com/
26.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2008
, “
Shape Optimization of Micro-Channel Heat Sink for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
2
), pp.
322
330
.10.1109/TCAPT.2008.916791
27.
Cressie
,
N.
,
1991
,
Statistics for Spatial Data
,
Wiley
,
New York
.
28.
Gumerov
,
N.
, and
Duraiswami
,
R.
,
2007
, “
Fast Radial Basis Function Interpolation Via Preconditioned Krylov Iteration
,”
SIAM J. Sci. Comput. (USA)
,
29
(
5
), pp.
1876
1899
.10.1137/060662083
29.
Wang
,
J. G.
, and
Liu
,
G. R.
,
2002
, “
A Point Interpolation Meshless Method Based on Radial Basis Function
,”
Int. J. Numer. Methods Eng.
,
54
, pp.
1623
1648
.10.1002/nme.489
30.
Ding
,
K.
,
Zhou
,
Z.
, and
Liu
,
C.
,
1998
, “
Latin Hypercube Sampling Used in the Calculation of Fracture Probability
,”
Reliab. Eng. Syst. Saf.
,
59
, pp.
239
242
.10.1016/S0951-8320(97)86402-2
31.
Vose
,
D.
,
2008
,
Risk Analysis, A Quantitative Guide
,
3rd ed.
,
Wiley
,
New York
.
32.
Kotz
,
S.
, and
Johnson
,
N. L.
,
1992
,
Process Capability Indices
,
Chapman and Hall
,
London
.
33.
CMRG
, “ROMARA: Reduced Order Modelling and Risk Analysis Software,” Computational Mechanics and Reliability Group (CMRG),
University of Greenwich
,
London, UK
, http://cmrg.gre.ac.uk/?page_id=484
34.
VR&D
, “
Design Optimization Technologies
,” Vanderplaats Research & Development, Inc. Colorado Springs, CO, www.vrand.com/
You do not currently have access to this content.