Liquid cooling incorporating microchannels are used to cool electronic chips in order to remove more heat load. However, such microchannels are often designed to be straight with rectangular cross section. In this paper, on the basis of straight microchannels having rectangular cross section (SRC), longitudinal-wavy microchannel (LWC), and transversal microchannel (TWC) were designed, respectively, and then the corresponding laminar flow and heat transfer were investigated numerically. Among them, the channel wall of LWC undulates along the flow direction according to a sinusoidal function while the TWC undulates along the transversal direction. The numerical results show that for removing an identical heat load, the overall thermal resistance of the LWC is decreased with increasing inlet Reynolds number while the pressure drop is increased greatly, so that the overall thermal performance of LWC is inferior to that of SRC under the considered geometries. On the contrary, TWC has a great potential to reduce the pressure drop compared to SRC, especially for higher wave amplitudes at the same Reynolds number. Thus the overall thermal performance of TWC is superior to that of SRC. It is suggested that the TWC can be used to cool chips effectively with much smaller pressure drop penalty. In addition to the overall thermal resistance, other criteria of evaluation of the overall thermal performance, e.g., (Nu/Nu0)/(f/f0) and (Nu/Nu0)/(f/f0)1/3, are applied and some controversial results are obtained.

References

References
1.
Mahajan
,
R.
,
Chia-pin
,
C.
, and
Chrysler
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
, pp.
1476
1486
.10.1109/JPROC.2006.879800
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
, pp.
126
129
.10.1109/EDL.1981.25367
3.
Sasaki
,
S.
, and
Kishimoto
,
T.
,
1986
, “
Optimal Structure for Microgrooved Cooling Fin for High-Power LSI Devices
,”
Electron. Lett.
,
22
, pp.
1332
1334
.10.1049/el:19860916
4.
Xie
,
X. L.
,
Liu
,
Z. J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
29
, pp.
64
74
.10.1016/j.applthermaleng.2008.02.002
5.
Xie
,
X. L.
,
Tao
,
W. Q.
, and
He
,
Y. L.
,
2007
, “
Numerical Study of Turbulent Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
ASME J. Electron. Packag.
,
129
, pp.
247
255
.10.1115/1.2753887
6.
Lorenzini
,
G.
, and
Moretti
,
S.
,
2009
, “
Numerical Performance Analysis of Constructal I and Y Finned Heat Exchanging Modules
,”
ASME J. Electronic Packaging
,
131
(
3
), p.
031012
.10.1115/1.3144152
7.
Lorenzini
,
G.
,
Biserni
,
C.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2011
, “
Constructal Design Applied to the Geometric Optimization of Y-Shaped Cavities Embedded in a Conducting Medium
,”
ASME J. Electron. Packag.
,
133
, p.
041008
.10.1115/1.4005296
8.
Lorenzini
,
G.
,
Biserni
,
C.
,
Garcia
,
F. L.
, and
Rocha
,
L. A. O.
,
2012
Geometric Optimization of a Convective T-Shaped Cavity on the Basis of Constructal Theory
,”
Int. J. Heat Mass Transfer
,
55
, pp.
6951
6958
.10.1016/j.ijheatmasstransfer.2012.07.009
9.
Arif
,
A. F. M.
,
Zubair
,
S. M.
, and
Pashah
,
S.
,
2012
, “
Thermal-Structural Performance of Orthotropic Pin Fin in Electronics Cooling Applications
,”
ASME J. Electron. Packag.
,
134
, p.
041005
.10.1115/1.4007258
10.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
,
2005
, “
Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1439
1449
.10.1016/j.ijheatmasstransfer.2004.10.022
11.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2760
2772
.10.1016/j.ijheatmasstransfer.2010.02.022
12.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W. Q.
, and
Joshi
,
Y.
,
2011
, “
Parametric Numerical Study of Flow and Heat Transfer in Microchannels With Wavy Walls
,”
ASME J. Heat Transfer
,
133
, p.
051702
.10.1115/1.4003284
13.
Xie
,
G. N.
,
Liu
,
J.
,
Zhang
,
W. H.
, and
Sunden
,
B.
,
2012
, “
Analysis of Flow and Thermal Performance of a Water-Cooled Transversal Wavy Microchannel Heat Sink for Chip Cooling
,”
ASME J. Electron. Packag.
,
134
, p.
041010
.10.1115/1.4023035
14.
Xie
,
G. N.
,
Chen
,
Z. Y.
,
Sunden
,
B.
, and
Zhang
,
W. H.
,
2013
, “
Numerical Predictions of the Flow and Thermal Performance of Water-Cooled Single-Layer and Double-Layer Wavy Microchannel Heat Sinks
,”
Numer. Heat Transfer, Part A
,
63
, pp.
201
225
.10.1080/10407782.2013.730445
15.
Xie
,
G. N.
,
Liu
,
Y. Q.
,
Zhang
,
W. H.
, and
Sunden
,
B.
,
2012
, “
Computational Study and Optimization of Laminar Heat Transfer and Pressure Loss of Double-Layer Microchannels for Chip Liquid Cooling
,”
ASME J. Therm. Sci. Eng. Appl.
(in press).
16.
Xu
,
B.
,
Ooti
,
K. T.
,
Wong
,
N. T.
, and
Choi
,
W. K.
,
2000
, “
Experimental Investigation of Flow Friction for Liquid Flow in Microchannels
,”
Int. Comm. Heat Mass Transfer
,
27
, pp.
1165
1176
.10.1016/S0735-1933(00)00203-7
17.
Liu
,
D.
, and
Garimella
,
S. V.
,
2004
, “
Investigation of Liquid Flow in Microchannels
,”
AIAA. J. Thermophys. Heat Transfer
,
18
, pp.
65
72
.10.2514/1.9124
18.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
19.
Sui
,
Y.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2011
, “
An Experimental Study of Flow Friction and Heat Transfer in Wavy Microchannels With Rectangular Cross Section
,”
Int. J. Therm. Sci.
,
50
, pp.
2473
2482
.10.1016/j.ijthermalsci.2011.06.017
20.
Koo
,
J. M.
, and
Kleinstreuer
,
C.
,
2003
, “
Liquid Flow in Microchannels: Experimental Observations and Computational Analyses of Microfluidics Effects
,”
J. Micromechan. Microeng.
,
13
, pp.
568
579
.10.1088/0960-1317/13/5/307
21.
Rosa
,
P.
,
Karayiannis
,
T. G.
, and
Collins
,
M. W.
,
2009
, “
Single-Phase Heat Transfer in Microchannels: The Importance of Scaling Effects
,”
Appl. Therm. Eng.
,
29
, pp.
3447
3468
.10.1016/j.applthermaleng.2009.05.015
22.
Berger
,
S. A.
,
Talbot
,
L.
, and
Yao
,
L. S.
,
1983
, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
,
15
, pp.
461
512
.10.1146/annurev.fl.15.010183.002333
23.
Tao
,
W. Q.
,
He
,
Y. L.
,
Wang
,
Q. W.
,
Qu
,
Z. G.
, and
Song
,
F. Q.
,
2002
, “
A Unified Analysis on Enhancing Single Phase Convective Heat Transfer With Field Synergy Principle
,”
Int. J. Heat and Mass Transfer
,
45
, pp.
4871
4879
.10.1016/S0017-9310(02)00173-4
24.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer (in Chinese)
,
Higher Education Press
,
Beijing
.
25.
Ding
,
J.
, and
Manglik
,
R. M.
,
1996
, “
Analytical Solutions for Laminar Fully Developed Flows in Double-Sine Shaped Ducts
,”
Heat Mass Transfer
,
31
, pp.
269
277
.10.1007/BF02328619
26.
Rush
,
T. A.
,
Newell
,
T. A.
, and
Jacobi
,
A. M.
,
1999
, “
An Experimental Study of Flow and Heat Transfer in Sinusoidal Wavy Passages
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1541
1553
.10.1016/S0017-9310(98)00264-6
27.
Rosaguti
,
N. R.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2006
, “
Laminar Flow and Heat Transfer in a Periodic Serpentine Channel With Semi-Circular Cross-Section
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2912
2923
.10.1016/j.ijheatmasstransfer.2006.02.015
28.
Gee
,
D. L.
, and
Webb
,
R. L.
,
1980
, “
Forced Convection Heat Transfer in Helically Rib-Roughened Tubes
,”
Int. J. Heat Mass Transfer
,
23
, pp.
1127
1136
.10.1016/0017-9310(80)90177-5
29.
Ligrani
,
P. M.
,
Oliveira
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,
AIAA J.
,
41
, pp.
337
362
.10.2514/2.1964
You do not currently have access to this content.