The objective of this study is to understand the effects of various parameters involved in the chip design and cooling on the occurrence of hot spots on a multicore processor chip. The thermal environment for the die is determined by the cooling design which differs distinctly between different classes of electronic equipment. In the present study, like many other hot spot studies, the effective heat transfer coefficient represents the thermal environment for the die, but, its representative values are derived for different cooling schemes in order to examine in what classes of electronic equipment the hot spot concern grows. The cooling modes under study are high-performance air-cooling, high-performance liquid-cooling, conventional air-cooling, and oil-cooling in infrared radiation (IR) thermography setup. Temperature calculations were performed on a model which is designed to facilitate the study of several questions that have not been fully addressed in the existing literature. These questions are concerned with the granularity of power and temperature distributions, thermal interactions between circuits on the die, the roles of on-chip wiring layer and the buried dioxide in heat spreading, and the mechanism of producing temperature contrast across the die. The main results of calculations are the temperature of the target spot and the temperature contrast across the die. Temperature contrasts are predicted in a range 10–25 K, and the results indicate that a major part of the temperature contrast is formed at a granularity corresponding to the size of functional units on actual microprocessor chips. At a fine granularity level and under a scenario of high power concentration, the on-chip wiring layer and the buried oxide play some roles in heat spreading, but their impact on the temperature is generally small. However, the details of circuits need to be taken into account in future studies in order to investigate the possibility of nanometer-scale hot spots. Attention is also called to the need to understand the effect of temperature nonuniformity on the processor performance for which low temperature at inactive cells makes a major contribution. In contrast to the situation for the die under forced convection cooling, the die in passively cooled compact equipment is in distinctly different thermal environment. Strong thermal coupling between the die and the system structure necessitates the integration of package and system level analysis with the die-level analysis.

References

References
1.
Borkar
,
S.
,
2007
, “
Thousand Core Chips—A Technology Perspective
,”
IEEE Design Automation Conference (DAC 2007)
, San Diego, CA, June 4–8, pp.
746
749
.
2.
Esmaelizadeh
,
H.
,
Biem
,
E.
,
Amant
,
R. S.
,
Sankaralingam
,
K.
, and
Burger
,
D.
,
2011
, “
Dark Silicon and the End of Multicore Scaling
,”
38th International Symposium on Computer Architecture (ISCA’11)
, San Jose, CA, June 4–8, pp.
1
12
.
3.
Nakayama
,
W.
,
2013
, “
Study on Heat Conduction in a Simulated Multicore Processor Chip—Part I: Analytical Modeling
,”
ASME J. Electron. Packag.
,
135
, p.
021002
4.
Fukutani
,
K.
, and
Shakouri
,
A.
,
2006
, “
Design of Bulk Thermoelectric Modules for Integrated Circuit Thermal Management
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
4
), pp.
750
757
.10.1109/TCAPT.2006.885938
5.
Yang
,
B.
,
Wang
,
P.
, and
Bar-Cohen
,
A.
,
2007
, “
Mini-Contact Enhanced Thermoelectric Cooling of Hot Spots in High Power Devices
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
3
), pp.
432
438
.10.1109/TCAPT.2007.898744
6.
Cheng
,
Y.-K.
,
Raha
,
P.
,
Teng
,
C.-C.
,
Rosenbaum
,
E.
, and
Kang
,
S.-M.
,
1998
, “
ILLIADS-T: An Electrothermal Timing Simulator for Temperature-Sensitive Reliability Diagnosis of CMOS VLSI Chips
,”
IEEE Trans. Comput.-Aided Des.
,
17
(
8
), pp.
668
681
.10.1109/43.712099
7.
Skadron
,
K.
,
Abdelzaher
,
T.
, and
Stan
,
M. R.
,
2002
, “
Control-Theoretic Techniques and Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Management
,”
Proceedings 8th International Symposium on High-Performance Computer Architecture
,
Cambridge
,
MA, February 2–6
,
pp
.
1
17
.10.1109/HPCA.2002.995695
8.
Karajgjikar
,
S.
,
Agonafer
,
D.
,
Ghose
,
K.
,
Sammakia
,
B.
,
Amon
,
C.
, and
Refai-Ahmed
,
G.
,
2010
, “
Multi-Objective Optimization to Improve Both Thermal and Device Performance of a Nonuniformly Powered Micro-Architecture
,”
ASME J. Electron. Packag.
,
132
, p.
021008
.10.1115/1.4001852
9.
Huang
,
W.
,
Sankaranarayanan
,
K.
,
Ribando
,
R. J.
,
Stan
,
M. R.
, and
Skadron
,
K.
,
2007
, “
An Improved Block-Based Thermal Model in HotSpot 4.0 With Granularity Considerations
,”
Proceedings 6th Annual Workshop on Duplicating, Deconstructing, and Debanking (WDDD’07)
,
San Diego, CA
, June 10, pp.
1
10
.
10.
Tsai
,
C.-H.
, and
Kang
,
S.-M.
,
2000
, “
Cell-Level Placement for Improved Substrate Thermal Distribution
,”
IEEE Trans. Comput.-Aided Des.
,
19
(
2
), pp.
253
266
.10.1109/43.828554
11.
Sato
,
T.
,
Ichimiya
,
J.
,
Ono
,
N.
,
Hachiya
,
K.
, and
Hashimoto
,
M.
,
2005
, “
On-Chip Thermal Gradient Analysis and Temperature Flattening for SoC Design
,”
IEICE Trans. Fundamentals
,
E88-A
(
12
), pp.
3382
3389
.10.1093/ietfec/e88-a.12.3382
12.
Chatterjee
,
D.
, and
Manikas
,
T. W.
,
2010
, “
On-Chip Thermal Optimization by Whitespace Reallocation Using a Constrained Particle-Swarm Optimization Algorithm
,”
IET Circuits Devices Syst.
,
4
(
3
), pp.
251
260
.10.1049/iet-cds.2009.0049
13.
Ito
,
M.
,
Hesegawa
,
N.
,
Egawa
,
R.
,
Suzuki
,
K.
, and
Nakamura
,
T.
,
2005
, “
An Adaptive-Grain Thermal Simulation Model to Evaluate Effects of Spatio-Temporal Analysis Granularity Upon the Thermal Behavior of VLSIs
,”
Proceedings International Workshop on Thermal Investigation of ICs and Systems (THERMINIS 2005), Lake Maggiore, Italy, September 27–30
, pp.
1
8
.
14.
Melamed
,
S.
,
Thorolfsson
,
T.
,
Srinivasan
,
A.
,
Cheng
,
E.
,
Franzon
,
P.
, and
Davis
,
R.
,
2009
, “
Junction-Level Thermal Extraction and Simulation of 3DICs
,”
IEEE International Conference on 3D System Integration
(
3DIC 2009
), San Francisco, CA, September 28–30, pp.
1
7
.10.1109/3DIC.2009.5306529
15.
Hamman
,
H. F.
,
Weger
,
A.
,
Lacey
,
J. A.
,
Hu
,
Z.
,
Bose
,
P.
,
Cohen
,
E.
, and
Wakil
,
J.
,
2007
, “
Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements
,”
IEEE J. Solid State Circuits
,
42
(
1
), pp.
56
65
.10.1109/JSSC.2006.885064
16.
Mesa-Martinez
,
F. J.
,
Nayfach-Battilana
,
J.
, and
Rebau
,
J.
,
2007
, “
Power Model Validation Through Thermal Measurements
,”
Proceedings of the 34th Annual International Symposium on Computer Architecture
(
ISCA’07
), San Diego, CA, June 9–11, pp.
1
9
.10.1145/1273440.1250700
17.
Kursun
,
K.
, and
Cher
,
C.-Y.
,
2009
, “
Temperature Variation Characterization and Thermal Management of Multicore Architectures
,”
IEEE Micro
,
29
(1)
, pp.
116
126
.10.1109/MM.2009.18
18.
Reda
,
S.
,
Cochran
,
R. J.
, and
Nowroz
,
A. N.
,
2011
, “
Improved Thermal Tracking for Processors Using Hard and Soft Sensor Allocation Techniques
,”
IEEE Trans. Comput.
,
60
(
6
), pp.
841
851
.10.1109/TC.2011.45
19.
Sharifi
,
S.
, and
Rosing
,
T. S.
,
2010
, “
Accurate Direct and Indirect On-Chip Temperature Sensing for Efficient Dynamic Thermal Management
,”
IEEE Trans. Comput.-Aided Des.
,
29
(
10
), pp.
1586
1599
.10.1109/TCAD.2010.2061310
20.
Sikka
,
K. K.
,
2005
, “
An Analytical Temperature Prediction Method for a Chip Power Map
,”
21th IEEE Semi-Therm Symposium
, San Jose, CA, March 15–17, pp.
161
166
.10.1109/STHERM.2005.1412173
21.
Kaisare
,
A.
,
Agonafer
,
D.
,
Haji-Sheikh
,
A.
,
Chrysler
,
G.
, and
Mahajan
,
R.
,
2005
, “
Thermal Based Optimization of Functional Block Distribution in a Non-Uniformly Powered Die
,” ASME InterPACK’05, San Francisco, CA, July 17–22,
ASME
Paper No. IPACK2005-73486.10.1115/IPACK2005-73486
22.
Etessam-Yazdani
,
K.
,
Ashegi
,
M.
, and
Hamann
,
H. F.
,
2008
, “
Investigation of the Impact of Power Granularity on Chip Thermal Modeling Using White Noise Analysis
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
211
215
.10.1109/TCAPT.2008.916859
23.
Byon
,
C.
,
Choo
,
K.
, and
Kim
,
S. J.
,
2010
, “
Experimental and Analytical Study on Chip Hot Spot Temperature
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2066
2072
.10.1016/j.ijheatmasstransfer.2010.12.022
24.
Lasance
,
C. J. M.
,
2010
, “
How to Estimate Heat Spreading Effects in Practice
,”
ASME J. Electron. Packag.
,
132
, p.
031004
.10.1115/1.4001856
25.
Lee
,
S.
,
1998
, “
Calculating Spreading Resistance in Heat Sinks
,”
Electron. Cooling
,
4
(
1
), pp.
30
33
.
26.
Wirtz
,
R. A.
,
Sohal
,
R.
, and
Wang
,
H.
,
1997
, “
Thermal Performance of Pin-Fin Fan-Sink Assemblies
,”
ASME J. Electron. Packag.
,
119
, pp.
26
31
.10.1115/1.2792197
27.
Saini
,
M.
, and
Webb
,
R. L.
,
2002
, “
Heat Rejection Limits of Air Cooled Plane Fin Heat Sinks for Computer Cooling
,”
Inter Society Conference on Thermal Phenomena in Electronic Systems
(
ITHERM2002
), San Diego, CA, May 29–June 1, pp.
1
8
.10.1109/ITHERM.2002.1012431
28.
Mochizuki
,
M.
,
Saito
,
Y.
,
Nguyen
,
T.
,
Wuttijumnong
,
V.
,
Wu
,
X.
, and
Nguyen
,
T.
,
2005
, “
Revolution in Fan Heat Sink Cooling Technology to Extend and Maximize Air Cooling for High Performance Processors in Laptop/Desktop/Server Application
,”
ASME InterPACK’05, San Francisco, CA, July 17–22
,
ASME
Paper No. IPACK2005-73286.10.1115/IPACK2005-73286
29.
Wei
,
J.
,
2008
, “
Challenge in Cooling Design of CPU Packages for High-Performance Servers
,”
Heat Transfer Eng.
,
29
(
2
), pp.
178
187
.10.1080/01457630701686727
30.
Kondo
,
Y.
,
Behnia
,
M.
,
Nakayama
,
W.
, and
Matsushima
,
H.
,
1998
, “
Optimization of Finned Heat Sinks for Impingement Cooling of Electronic Packages
,”
ASME J. Electron. Packag.
,
120
, pp.
259
266
.10.1115/1.2792631
31.
Koplow
,
J. P.
,
2010
, “
A Fundamentally New Approach to Air-Cooled Heat Exchangers
,”
Sandia Report No. SANDIA2010-025
8
.
32.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
John Wiley & Sons
, New York.
33.
Ramadhyani
,
S.
,
Moffatt
,
D. F.
, and
Incropera
,
F. P.
,
1985
, “
Conjugate Heat Transfer From Small Isothermal Heat Sources Embedded in a Large Substrate
,”
Int. J. Heat Mass Transfer
,
28
(
10
), pp.
1945
1952
.10.1016/0017-9310(85)90216-9
34.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.10.1080/01457630601117799
35.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sink for VLSI
,”
IEEE Electron Device Lett.
,
2
, pp.
126
129
.10.1109/EDL.1981.25367
36.
Lee
,
T.-Y. T.
,
Chambers
,
B.
, and
Ramakrishna
,
K.
,
1998
, “
Thermal Management of Handheld Telecommunication Products
,”
Electronics Cooling, Article 3.
37.
Elie
,
A.
, and
Ferrario
,
J.
,
2003
, “
Electronic Components in Cell Phone Handsets: Thermal Simulations and Evaluation of Modeling Assumptions
,”
53rd Electronic Components and Technology Conference
(
ECTC
), New Orleans, LA, May 27–30, pp.
449
451
.10.1109/ECTC.2003.1216316
38.
Nakayama
,
W.
, “
Heat from Embedded Devices in Laminates: Analytical Modeling to Survey the Effects of Some Key Parameters on Heat Source Temperature
,”
ASME J. Electron. Packag.
(submitted).
39.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
,
2005
, “
Comparison of Different Phonon Transport Models for Predicting Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
713
723
.10.1115/1.1924571
40.
Vasileska
,
D.
,
Raleva
,
K.
, and
Goodnick
,
S. M.
,
2009
, “
Self-Heating Effects in Nanoscale FD SOI Devices: The Role of the Substrate, Boundary Conditions at Various Interfaces, and the Dielectric Material Type for the Box
,”
IEEE Trans. Electron Devices
,
56
(
12
), pp.
3064
3071
.10.1109/TED.2009.2032615
41.
Banerjee
,
K.
, and
Mehrota
,
A.
,
2001
, “
Global (Interconnect) Warming
,”
IEEE Circuits and Devices, Sept.
, pp.
16
32
.10.1109/101.960685
42.
Im
,
S.
,
Srivastava
,
N.
,
Banerjee
,
K.
, and
Goodson
,
K. E.
,
2005
, “
Thermal Scaling Analysis of Multilevel Cu/Low-k Interconnect Structures in Deep Nanometer Scale Technologies
,”
Proceedings of the 22nd International VLSI Multilevel Interconnect Conference (VMIC)
, Fremont, CA, October 3–6, pp.
1
6
.
43.
van Berkel
,
C. H. K.
,
2009
, “
Multi-Core for Mobile Phones
,”
Proceedings of Design, Automation, and Test in Europe (DATE09)
, Nice, France, April 20–24, IEEE, pp.
1260
1265
.
44.
Woo
,
D. H.
, and
Lee
,
H.-H., S.
,
2008
, “
Extending Amdahl's Law for Energy-Efficient Computing in the Many-Core Era
,”
IEEE Comput.
,
41
(
12
), pp.
24
31
.10.1109/MC.2008.494
45.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1959
,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford University Press
, London, pp.
230
231
.
46.
Goicochea
,
J. V.
,
Madrid
,
M.
, and
Amon
,
C.
,
2010
, “
Hierarchical Modeling of Heat Transfer in Silicon-Based Electronic Devices
,”
ASME J. Heat Transfer
,
132
(
10
), p.
102401
.10.1115/1.4001644
47.
Shinha
,
S.
,
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
,
2006
, “
Non-Equilibrium Phonon Distributions in Sub-100 nm Silicon Transistors
,”
ASME J. Heat Transfer
,
128
(
7
), pp.
638
647
.10.1115/1.2194041
48.
Passas
,
P.
,
Katevenis
,
M.
, and
Pnevmatikatos
,
D.
,
2012
, “
Crossbar NoCs are Scalable Beyond 100 Nodes
,”
IEEE Trans. Comput.-Aided Des.
,
31
(
4
), pp.
573
585
.10.1109/TCAD.2011.2176730
You do not currently have access to this content.