A system of temperature calculations is developed to study the conditions leading to hot spot occurrence on multicore processor chips. The analysis is performed on a physical model which incorporates certain salient features of multicore processor. The model has active and background cells laid out in a checkered pattern, and the pattern repeats itself in fine grain active cells. The die has a buried dioxide and a wiring layer stacked on the die body, and heat sources are placed at the wiring layer/buried oxide interface. With this model we explore the effects of various parameters on the target spot temperature. The parameters are the die dimensions, the materials' thermal conductivities, the effective heat transfer coefficients on the die surfaces, the power map, and the spatial resolution with which we view the power and temperature distributions on the die. Closed-form analytical solutions are derived and used to examine the roles of these parameters in creating hot spots. The present paper reports the details of mathematical formulations and steps of temperature calculation. The results for a particular example case are included to illustrate what can be learned from the calculations.

References

1.
Hamman
,
H. F.
,
Weger
,
A.
,
Lacey
,
J. A.
,
Hu
,
Z.
,
Bose
,
P.
,
Cohen
,
E.
, and
Wakil
,
J.
,
2007
, “
Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements
,”
IEEE J. Solid-State Circuits
,
42
(
1
), pp.
56
65
.10.1109/JSSC.2006.885064
2.
Mesa-Martinez
,
F. J.
,
Nayfach-Battilana
,
J.
, and
Rebau
,
J.
,
2007
, “
Power Model Validation Through Thermal Measurements
,”
Proceedings ISCA’07
, San Diego, CA, June 9–13, pp.
1
9
.
3.
Kursun
,
K.
, and
Cher
,
C.-Y.
,
2009
, “
Temperature Variation Characterization and Thermal Management of Multicore Architectures,
IEEE MICRO
,
29
(
1
), pp.
116
126
.10.1109/MM.2009.18
4.
Reda
,
S.
,
Cochran
,
R. J.
, and
Nowroz
,
A. N.
,
2011
, “
Improved Thermal Tracking for Processors Using Hard and Soft Sensor Allocation Techniques
,”
IEEE Trans. Comput.
,
60
(
6
), pp.
841
851
.10.1109/TC.2011.45
5.
Huang
,
W.
,
Skadron
,
K.
,
Gurumurthi
,
S.
,
Ribando
,
R. J.
, and
Stan
,
M. R.
,
2009
, “
Differentiating the Roles of IR Measurement and Simulation for Power and Temperature-Aware Design
,”
Proceedings of IEEE International Symposium Performance Analysis of Systems and Sofware
(
ISPASS 2009
), Boston, MA, April 26–28, pp.
1
10
.10.1109/ISPASS.2009.4919633
6.
Huang
,
W.
,
Ghosh
,
S.
,
Velusamy
,
S.
,
Sankaranarayanan
,
K.
,
Skadron
,
K.
, and
Stan
,
M. R.
,
2006
, “
HotSpot: A Compact Thermal Modeling Methodology for Early-Stage VLSI Design
,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
,
14
(
5
), pp.
501
513
.10.1109/TVLSI.2006.876103
7.
Pedram
,
M.
, and
Nazarian
,
S.
,
2006
, “
Thermal Modeling, Analysis, and Management in VLSI Circuits: Principles and Methods
,”
Proc. IEEE
,
94
(
8
), pp.
1487
1501
.10.1109/JPROC.2006.879797
8.
Cheng
,
Y.-K.
,
Raha
,
P.
,
Teng
,
C.-C.
,
Rosenbaum
,
E.
, and
Kang
,
S.-M.
,
1998
, “
ILLIADS-T: An Electrothermal Timing Simulator for Temperature-Sensitive Reliability Diagnosis of CMOS VLSI Chips
,”
IEEE Trans. Comput.-Aided Des.
,
17
(
8
), pp.
668
681
.10.1109/43.712099
9.
Wang
,
T.-Y.
, and
Chen
,
C. C.-P.
,
2002
, “
3-D Thermal-ADI: A Linear-Time Chip Level Transient Thermal Simulator
,”
IEEE Trans. Comput.-Aided Des.
,
21
(
12
), pp.
668
681
.10.1109/TCAD.2002.804385
10.
Tsai
,
C.-H.
, and
Kang
,
S.-M.
,
2000
, “
Cell-Level Placement for Improve Substrate Thermal Distribution
,”
IEEE Trans. Comput.-Aided Des.
,
19
(
2
), pp.
253
266
.10.1109/43.828554
11.
Kaisare
,
A.
,
Agonafer
,
D.
,
Haji-Sheikh
,
A.
,
Chrysler
,
G.
, and
Mahajan
,
R.
,
2005
, “
Thermal Based Optimization of Functional Block Distribution in a Non-Uniformly Powered Die
,”
ASME InterPACK’05
, San Francisco, CA, July 17–22,
ASME
Paper No. IPACK2005-73486.10.1115/IPACK2005-73486
12.
Sato
,
T.
,
Ichimiya
,
J.
,
Ono
,
N.
,
Hachiya
,
K.
, and
Hashimoto
,
M.
,
2005
, “
On-Chip Thermal Gradient Analysis and Temperature Flattening for SoC Design
,”
IEICI Trans. Fundam.
,
E88-A
(
12
), pp.
3382
3389
.10.1093/ietfec/e88-a.12.3382
13.
Bhoj
,
S.
, and
Bhatia
,
D.
,
2007
, “
Thermal Modeling and Temperature Driven Placement for FPGAs
,”
Proceedings 2007 International Symposium on Circuits and Systems
(
ISCAS 2007
), New Orleans, LA, May 27–30, pp.
1053
1056
.10.1109/ISCAS.2007.378190
14.
Karajgjikar
,
S.
,
Agonafer
,
D.
,
Ghose
,
K.
,
Sammakia
,
B.
,
Amon
,
C.
, and
Refai-Ahmed
,
G.
,
2010
, “
Multi-Objective Optimization to Improve Both Thermal and Device Performance of a Nonuniformly Powered Micro-Architecture
,”
ASME J. Electron. Packag.
,
132
, p.
021008
.10.1115/1.4001852
15.
Haghdad
,
K.
,
Anis
,
M.
, and
Ismail
,
Y.
,
2010
, “
Floorplanning for Low Power IC Design Constraining Temperature Variations
,”
Microelectron. J.
,
42
, pp.
89
96
.10.1016/j.mejo.2010.08.022
16.
Skadron
,
K.
,
Abdelzaher
,
T.
, and
Stan
,
M. R.
,
2002
, “
Control-Theoretic Techniques and Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Management
,”
Proceedings 8th International Symposium on High-Performance Computer Architecture
,
Cambridge, MA
,
February 2–6
,
pp
.
1
17
.10.1109/HPCA.2002.995695
17.
Shang
,
L.
,
Peh
,
L.-S.
,
Kumar
,
A.
,
Jha
,
N. K.
,
2006
, “
Temperature-Aware On-Chip Networks
,”
IEEE MICRO
,
26
(
1
), pp.
130
139
.10.1109/MM.2006.23
18.
Sharifi
,
S.
, and
Rosing
,
T. S.
,
2010
, “
Accurate Direct and Indirect On-Chip Temperature Sensing for Efficient Dynamic Thermal Management
,”
IEEE Trans. Comput.-Aided Des.
,
29
(
10
), pp.
1586
1599
.10.1109/TCAD.2010.2061310
19.
Ito
,
M.
,
Hesegawa
,
N.
,
Egawa
,
R.
,
Suzuki
,
K.
, and
Nakamura
,
T.
,
2005
, “
An Adaptive-Grain Thermal Simulation Model to Evaluate Effects of Spatio-Temporal Analysis Granularity Upon the Thermal Behavior of VLSIs
,”
Proceedings International Workshop on Thermal Investigation of ICs and Systems (THERMINIC)
, Lake Maggiore, Italy, September 27–30, pp.
1
8
.
20.
Huang
,
W.
,
Sankaranarayanan
,
K.
,
Ribando
,
R. J.
,
Stan
,
M. R.
, and
Skadron
,
K.
,
2007
, “
An Improved Block-Based Thermal Model in HotSpot 4.0 with Granularity Considerations
,”
Proceedings 6th Annual Workshop on Duplicating, Deconstructing, and Debanking (WDDD’07)
,
San Diego, CA
,
June 9–13
, pp.
1
10
.
21.
Park
,
J.-H.
,
Wang
,
X.
,
Shakouri
,
A.
, and
Kang
,
S-M.
,
2008
, “
Fast Computation of Temperature Profiles of VLSI ICs With High Spatial Resolution
,”
IEEE SEMI-THERM 08
, San Jose, CA, March 16–20, pp.
50
54
.10.1109/STHERM.2008.4509365
22.
Etessam-Yazdani
,
K.
,
Ashegi
,
M.
, and
Hamann
,
H. F.
,
2008
, “
Investigation of the Impact of Power Granularity on Chip Thermal Modeling Using White Noise Analysis
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
211
215
.10.1109/TCAPT.2008.916859
23.
Sankaranarayanan
,
K.
,
Huang
,
W.
,
Stan
,
M. R.
,
Haj-Hariri
,
H.
,
Ribando
,
R. J.
, and
Skadron
,
K.
,
2009
, “
Granularity of Microprocessor Thermal Management: A Technical Report
,” http://ir.lib.virginia.edu/catalog/libra-oa:1346
24.
Hassan
,
Z.
,
Allec
,
N.
,
Shang
,
L.
,
Dick
,
R. P.
,
Venkatraman
,
V.
, and
Yang
,
R.
,
2009
, “
Multiscale Thermal Analysis for Nanometer-Scale Integrated Circuits
,”
IEEE Trans. Comput.-Aided Des.
,
28
(
6
), pp.
860
873
.10.1109/TCAD.2009.2017428
25.
Hassan
,
Z.
,
Allec
,
N.
,
Yang.
F
,
Shang
,
L.
,
Dick
,
R. P.
, and
Zeng
,
X.
,
2011
, “
Full-Spectrum Spatial-Temporal Dynamic Thermal Analysis for Nanometer-Scale Integrated Circuits
,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
,
19
(
12
), pp.
2276
2289
.10.1109/TVLSI.2010.2076351
26.
Chatterjee
,
D.
, and
Manikas
,
T. W.
,
2010
, “
On-Chip Thermal Optimization by Whitespace Reallocation Using a Constrained Particle-Swarm Optimization Algorithm
,”
IET Circuits Dev., Syst.
,
4
(
3
), pp.
251
260
.10.1049/iet-cds.2009.0049
27.
Logan
,
S.
, and
Guthaus
,
M. R.
,
2009
, “
Fast Thermal-Aware Floorplanning Using White-Space Optimization
,”
IFIP/IEEE International Conference on Very Large Scale Integration
(
VLSI-SoC
),
Florianapolis, Brazil
, October 12–14, pp.
65
70
.10.1109/VLSISOC.2009.6041332
28.
Chen
,
Y.
,
Zhou
,
H.
, and
Dick
,
R. P.
,
2011
, “
Integrated Circuit White Space Redistribution for Temperature Optimization
,”
IEEE Design, Automation & Test in Europe Conference & Exhibition
(DATE 11), Grenoble, France, March 14–18, pp.
1
6
.
29.
Kleiner
,
M. B.
,
Kühn
,
S. A.
,
Ramm
,
P.
, and
Weber
,
W.
,
1995
, “
Thermal Analysis of Vertically Integrated Circuits
,”
International Electron Devices Meeting
(IEDM 95)
, Washington, DC, December 10–13, pp.
487
490
.10.1109/IEDM.1995.499244
30.
Wilkerson
,
P.
,
Raman
,
A.
, and
Turowski
,
M.
,
2004
, “
Fast, Automated Thermal Simulation of Three-Dimensional Integrated Circuits
,”
Proceedings 9th Inter Society Conference on Thermal Phenomena in Electronic Systems
(
ITHERM'04
), Las Vegas, NV, June 1-4, pp.
706
713
.10.1109/ITHERM.2004.1319245
31.
Saini
,
M
.,
2006
, “
Theoretical Model Based Thermal Studies on Stacked Dies
,”
Proceedings 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM’06
), San Diego, CA, May 30-June 2, pp.
1213
1219
.10.1109/ITHERM.2006.1645483
32.
Melamed
,
S.
,
Thorolfsson
,
T.
,
Srinivasan
,
A.
,
Cheng
,
E.
,
Franzon
,
P.
, and
Davis
,
R.
,
2009
, “
Junction-Level Thermal Extraction and Simulation of 3DICs
,”
IEEE International Conference on 3D System Integration
(
3DIC 2009
), San Francisco, CA, September 28–30, pp.
1
7
.10.1109/3DIC.2009.5306529
33.
Jain
,
A.
,
Jones
,
R. E.
,
Chatterjee
,
R.
, and
Pozder
,
S.
,
2010
, “
Analytical and Numerical Modeling of the Thermal Performance of Three-Dimensional Integrated Circuits
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(
1
), pp.
56
63
.10.1109/TCAPT.2009.2020916
34.
Sridhar
,
A.
,
Vincenzi
,
A.
,
Ruggiero
,
M.
,
Brunschwiler
,
T.
, and
Atienza
,
D.
,
2012
, “
Neural Network-Based Thermal Simulation of Integrated Circuits on GPUs
,”
IEEE Trans. Comput.-Aided Des.
,
31
(
1
), pp.
23
36
.10.1109/TCAD.2011.2174236
35.
Cong
,
J.
,
Wei
,
J.
, and
Zhang
,
Y.
,
2004
, “
A Thermal-Driven Floorplanning Algorithm
,”
Proceedings IEEE Computer-Aided Design Conference
, pp.
306
313
.
36.
Akturk
,
A.
,
Goldsman
,
N.
, and
Metze
,
G.
,
2005
, “
Self-Consistent Modeling of Heating and MOSFET Performance in 3-D Integrated Circuits
,”
IEEE Trans. Electron Devices
,
52
(
11
), pp.
2395
2403
.10.1109/TED.2005.857187
37.
Cong
,
J.
, and
Zhang
,
Y.
,
2005
, “
Thermal Via Planning for 3-D ICs
,”
Proceedings IEEE/ACM International Conference on Computer Aided Design
(
ICCAD-2005
), San Jose, CA, November 6–10, pp.
744
751
.10.1109/ICCAD.2005.1560164
38.
Goplen
,
B.
, and
Sapatnekar
,
S. S.
,
2006
, “
Placement of Thermal Vias in 3-D ICs Using Various Thermal Objectives
,”
IEEE Trans. Comput.-Aided Des.
,
25
(
4
), pp.
692
709
.10.1109/TCAD.2006.870069
39.
Coskun
,
A. K.
,
Ayala
,
J. L.
,
Atienza
,
D.
,
Rosing
,
T. S.
, and
Leblebici
,
Y.
,
2009
, “
Dynamic Thermal Management in 3D Multicore Architectures,” Design, Automation & Test in Europe Conference & Exhibition (DATE’09)
, Nice, France, April 20–24, pp.
1410
1415
.
40.
Kang
,
K.
,
Kim
,
J.
,
Yoo
,
S.
, and
Kyung
,
C.-M.
,
2011
, “
Runtime Power Management of 3-D Multi-Core Architectures Under Peak Power and Temperature Constraints
,”
IEEE Trans. Comput.-Aided Des.
,
30
(
6
), pp.
905
918
.10.1109/TCAD.2010.2101371
41.
Akiyama
,
J.
,
Naeshiro
,
M.
, and
Amagai
,
M.
,
2005
, “
A Study of Hot Spot in Silicon Device for Stacked Die Packages
,”
International Symposium on Electronics Materials and Packaging (EMAP2005)
, Tokyo, December 11–14, pp.
238
242
.
42.
Brunschwiler
,
T.
,
Paredes
,
S.
,
Drechsler
,
U.
,
Michel
,
B.
,
Cesar
,
W.
,
Leblebici
,
Y.
,
Wunderle
,
B.
, and
Reichl
,
H.
,
2010
, “
Heat-Removal Performance Scaling of Interlayer Cooled Chip Stacks
,”
Proceedings Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(
ITHERM’10
), Las Vegas, NV, June 2–5, pp.
1
12
.10.1109/ITHERM.2010.5501254
43.
Sridhar
,
A.
,
Vincenzi
,
A.
,
Ruggiero
,
M.
,
Brunschwiler
,
T.
, and
Atienza
,
D.
,
2010
, “
3D-ICE: Fast Compact Transient Thermal Modeling for 3D ICs With Inter-Tier Liquid Cooling
,”
Proceedings of IEEE/ACM ICCAD
, San Jose, CA, November 7–11, pp.
463
470
.10.1109/ICCAD.2010.5653749
44.
Wilson
,
J. S.
, and
Raad
,
P. E.
,
2004
, “
A Transient Self-Adaptive Technique for Modeling Thermal Problems With Large Variations in Physical Scales
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3707
3720
.10.1016/j.ijheatmasstransfer.2004.03.011
45.
Kennedy
,
D. P.
,
1960
, “
Spreading Resistance in Cylindrical Semiconductor Devices
,”
J. Appl. Phys.
,
31
(
8
), pp.
1490
1497
.10.1063/1.1735869
46.
Joy
,
R. C.
, and
Schlig
,
E. S.
,
1970
, “
Thermal Properties of Very Fast Transistors
,”
IEEE Trans. Electron Devices
,
ED-17
(
8
), pp.
586
594
.10.1109/T-ED.1970.17035
47.
Lindsted
,
R. D.
, and
Surty
,
R. J.
,
1972
, “
Steady-State Junction Temperatures of Semiconductor Chips
,”
IEEE Trans. Electron Devices
,
ED-19
(
1
), pp.
41
44
.10.1109/T-ED.1972.17369
48.
Bilotti
,
A. A.
,
1974
, “
Static Temperature Distribution in IC Chips With Isothermal Heat Sources
,”
IEEE Trans. Electron Devices
,
ED-21
(
3
), pp.
217
226
.10.1109/T-ED.1974.17899
49.
Haji-Sheikh
,
A
.,
1990
, “
Peak Temperature in High-Power Chips
,”
IEEE Trans. Electron Devices
,
37
(
4
), pp.
902
907
.10.1109/16.52423
50.
Muzychka
,
Y. S.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2003
, “
Thermal Spreading Resistance of Eccentric Heat Sources on Rectangular Flux Channels
,”
ASME J. Electron. Packag.
,
125
, pp.
178
185
.10.1115/1.1568125
51.
Xiu
,
K.
, and
Ketchen
,
M.
,
2004
, “
Thermal Modeling of a Small Extreme Power Density Macro on a High Power Density Microprocessor Chip in the Presence of Realistic Packaging and Interconnect Structures
,”
54th Electronic Components and Technology Confernece
, Las Vegas, NV, June 1–4, pp.
918
923
.10.1109/ECTC.2004.1319447
52.
Sikka
,
K. K.
,
2005
, “
An Analytical Temperature Prediction Method for a Chip Power Map
,”
21th IEEE SEMI-THERM Symposium
, San Jose, CA, March 15–17, pp.
161
166
.10.1109/STHERM.2005.1412173
53.
Byon
,
C.
,
Choo
,
K.
, and
Kim
,
S. J.
,
2010
, “
Experimental and Analytical Study on Chip Hot Spot Temperature
,”
Int. J. Heat Mass Transfer
,
54
, pp.
2066
2072
.10.1016/j.ijheatmasstransfer.2010.12.022
54.
Hill
,
M. D.
, and
Marty
,
M. R.
,
2008
, “
Amdahl's Law in the Multicore Era
,”
IEEE Comput.
,
41
(
7
), pp.
33
38
.10.1109/MC.2008.209
55.
Woo
,
D. H.
, and
Lee
,
H.-H.
,
S.
,
2008
, “
Extending Amdahl's Law for Energy-Efficient Computing in the Many-Core Era
,”
IEEE Comput.
,
41
(
12
), pp.
24
31
.10.1109/MC.2008.501
56.
Esmaelizadeh
,
H.
,
Biem
,
E.
,
Amant
,
R. S.
,
Sankaralingam
,
K.
, and
Burger
,
D.
,
2011
, “
Dark Silicon and the End of Multicore Scaling
,”
38th International Symposium on Computer Architecture (ISCA'11)
, San Jose, CA, June 4–8, pp.
1
12
.
57.
Passas
,
P.
,
Katevenis
,
M.
, and
Pnevmatikatos
,
D.
,
2012
, “
Crossbar NoCs Are Scalable Beyond 100 Nodes
,”
IEEE Trans. Comput.-Aided Des.
,
31
(
4
), pp.
573
585
.10.1109/TCAD.2011.2176730
58.
Lasance
,
C. J. M.
,
2010
, “
How to Estimate Heat Spreading Effects in Practice
,”
ASME J. Electron. Packag.
,
132
, p.
031004
.10.1115/1.4001856
59.
Lee
,
S
.,
1998
, “
Calculating Spreading Resistance in Heat Sinks
,”
Electron. Cooling
,
4
(
1
), pp.
30
33
.
60.
Nakayama
,
W.
,
2013
, “
Study on Heat Conduction in a Simulated Multicore Processor Chip—Part II: Case Studies
,”
ASME J. Electron. Packag.
,
135
, p.
021003
.
You do not currently have access to this content.