Recent trends including rapid increases in the power ratings and continued miniaturization of semiconductor devices have pushed the heat dissipation of power electronics well beyond the range of conventional thermal management solutions, making control of device temperature a critical issue in the thermal packaging of power electronics. Although evaporative cooling is capable of removing very high heat fluxes, two-phase cold plates have received little attention for cooling power electronics modules. In this work, device-level analytical modeling and system-level thermal simulation are used to examine and compare single-phase and two-phase cold plates for a specified inverter module, consisting of 12 pairs of silicon insulated gate bipolar transistor (IGBT) devices and diodes. For the conditions studied, an R134a-cooled, two-phase cold plate is found to substantially reduce the maximum IGBT temperature and spatial temperature variation, as well as reduce the pumping power and flow rate, in comparison to a conventional single-phase water-cooled cold plate. These results suggest that two-phase cold plates can be used to substantially improve the performance, reliability, and conversion efficiency of power electronics systems.

References

References
1.
Mertens
,
R. G.
,
Chow
,
L.
,
Sundaram
,
K. B.
,
Cregger
,
R. B.
,
Rini
,
D. P.
,
Turek
,
L.
, and
Saarloos
,
B. A.
,
2007
, “
Spray Cooling of IGBT Devices
,”
ASME J. Electron. Packag.
,
129
, pp.
316
323
.10.1115/1.2753937
2.
Mudawar
,
I.
,
Bharathan
,
D.
,
Kelly
,
K.
, and
Narumanchi
,
S.
,
2009
, “
Two-Phase Spray Cooling of Hybrid Vehicle Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
32
, pp.
501
512
.10.1109/TCAPT.2008.2006907
3.
Bhunia
,
A.
,
Chandrasekaran
,
S.
, and
Chen
,
C.
,
2007
, “
Performance Improvement of a Power Conversion Module by Liquid Micro-Jet Impingement Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
30
, pp.
309
316
.10.1109/TCAPT.2007.898366
4.
Pautsch
,
A. G.
,
Gowda
,
A.
,
Stevanovic
,
L.
, and
Beaupre
,
R.
,
2009
, “
Doubled-Sided Microchannel Cooling of a Power Electronics Modules Using Power Overlay
,”
Proceedings of the ASME InterPACK Conference
,
San Francisco, CA, July 19–23
,
ASME
Paper No. InterPACK2009-89190.10.1115/InterPACK2009-89190
5.
Meysenc
,
L.
,
Jylhakallio
,
M.
, and
Barbosa
,
P.
,
2005
, “
Power Electronics Cooling Effectiveness Versus Thermal Inertia
,”
IEEE Trans. Power Electron.
,
20
, pp.
687
692
.10.1109/TPEL.2005.846548
6.
Bhunia
,
A.
,
Cai
,
Q.
, and
Chen
,
C. L.
,
2003
, “
Liquid Impingement and Phase Change for High Power Density Electronic Cooling
,”
Proceeding of the 41st AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV, January 6–9 (CDROM)
10.2514/6.2003-1034.
7.
Bhunia
,
A.
,
Cai
,
Q.
, and
Chen
,
C. L.
,
2005
, “
Jet Impingement Cooling of an Inverter Module in the Harsh Environment of a Hybrid Vehicle
,”
Proceedings of ASME 2005 Summer Heat Transfer Conference (HT2005)
,
San Francisco, CA, July 17–22
,
ASME
Paper No. HT2005-72574.10.1115/HT2005-72574
8.
Kim
,
D. W.
,
Rahim
,
E.
,
Bar-Cohen
,
A.
, and
Han
,
B.
,
2010
, “
Direct Submount Cooling of High Power LED's
,”
IEEE Trans. Compon. Packag. Technol.
,
33
, pp.
698
712
.10.1109/TCAPT.2010.2040618
9.
Bar-Cohen
,
A.
, and
Rahim
,
E.
,
2009
, “
Modeling and Prediction of Two-Phase Microgap Channel Heat Transfer Characteristics
,”
Heat Transfer Eng.
,
30
, pp.
601
625
.10.1080/01457630802656678
10.
Marcinichena
,
J. B.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2011
, “
Cooling of Microprocessors With Micro-Evaporation: A Novel Two-Phase Cooling Cycle
,”
Int. J. Refrig.
,
33
, pp.
1264
1276
.10.1016/j.ijrefrig.2010.06.008
11.
Howes
,
J. C.
,
Levett
,
D. B.
,
Wilson
,
S. T.
,
Marsala
,
J.
, and
Saums
,
L.
,
2008
, “
Cooling of an IGBT Drive System With Vaporizable Dielectric Fluid (VDF)
,”
Proceeding of the 24th IEEE Annual Semiconductor Thermal Measurement and Management Symposium
(
Semi-Therm 2008
),
San Jose, CA
, March 16–20, pp.
9
15
.10.1109/STHERM.2008.4509358
12.
Hannemannal
,
R.
,
Marsala
,
J.
, and
Pitasi
,
M.
,
2004
, “
Pumped Liquid Multiphase Cooling
,”
Proceedings of 2004 International Mechanical Engineering Congress and Exposition (IMECE2004)
,
Anaheim, CA, November 13–19
,
ASME
Paper No. IMECE2004-60669.10.1115/IMECE2004-60669
13.
Staunton
,
R. H.
,
Ayers
,
C. W.
,
Marlino
,
L. D.
,
Chiasson
,
J. N.
, and
Burress
,
T. A.
,
2006
, “
Evaluation of 2004 Toyota Prius Hybrid Electric Drive System
,”
Oak Ridge National Laboratory
, Oak Ridge, TN, Report No. ORNL/TM-2006/423, available at: http://k0bg.com/images/pdf/890029.pdf
14.
Burress
,
T.
,
2010
, “
The Progression of Commercially Available EV/HEV Technologies and Ongoing Research
,”
8th International Energy Conversion Engineering Conference, Nashville Convention Center & Renaissance Hotel
,
Nashville, TN, July 25–28
.
15.
Narumanchi
,
S.
,
Mihalic
,
M.
, and
Kelly
,
K.
,
2008
, “
Thermal Interface Materials for Power Electronics Applications
,”
Proceeding of the 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM 2008
),
Orlando, FL
, May 28–31, pp.
395
404
.10.1109/ITHERM.2008.4544297
16.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
, and
Joshi
,
Y. K.
,
2005
, “
Development of Liquid Cooling Techniques for Flip Chip Ball Grid Array Packages With High Heat Flux Dissipations
,”
IEEE Trans. Compon. Packag. Technol.
,
28
, pp.
127
135
.10.1109/TCAPT.2004.843164
17.
Copeland
,
D.
,
2000
, “
Optimization of Parallel Plate Heat Sinks for Forced Convection
,”
Proceedings of 16th IEEE SEMI-THERM Symposium
,
San Jose, CA
, March 21–23, pp.
266
272
.10.1109/STHERM.2000.837093
18.
Mei
,
F.
,
Parida
,
P. R.
,
Meng
,
J. W.
, and
Ekkad
,
S. V.
,
2008
, “
Fabrication, Assembly, and Testing of Cu-and Al-Based Micro-Channel Heat Exchangers
,”
J. Microelectromech. Syst.
,
17
, pp.
869
881
.10.1109/JMEMS.2008.924276
19.
Kakac
,
S.
,
1987
, “
The Effect of Temperature Dependent Fluid Properties on Convective Heat Transfer
,”
Handbook of Single-Phase Convective Heat Transfer
,
John Wiley
,
New York
.
20.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
21.
Chen
,
J. C.
,
1966
, “
Correlation for Boiling Heat Transfer to Saurated Fluids in Convective Flow
,”
Ind. Eng. Chem., Process Des. Dev.
,
5
(
3
), pp.
332
329
.10.1021/i260019a023
22.
Zhang
,
W.
,
Hibiki
,
T.
, and
Mishima
,
K.
,
2004
, “
Correlation for Flow Boiling Heat Transfer in Mini-Channels
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5749
5763
.10.1016/j.ijheatmasstransfer.2004.07.034
23.
Zhang
,
W.
,
Hibiki
,
T.
,
Mishima
,
K.
, and
Mi
,
Y.
,
2006
, “
Correlation of Critical Heat Flux for Flow Boiling of Water in Mini-Channels
,”
Int. J. Heat Mass Transfer
,
49
, pp.
1058
1072
.10.1016/j.ijheatmasstransfer.2004.07.034
24.
Müller-Steinhagen
,
H.
, and
Heck
,
K.
,
1986
, “
Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes
,”
Chem. Eng. Process
,
20
, pp.
297
308
.10.1016/0255-2701(86)80008-3
25.
Cioncolini
,
A.
,
Thome
,
J. R.
, and
Lombardi
,
C.
,
2009
, “
Unified Macro-to-Microscale Method to Predict Two-Phase Frictional Pressure Drops of Annular Flows
,”
Int. J. Multiphase Flow
,
35
, pp.
1138
1148
.10.1016/j.ijmultiphaseflow.2009.07.005
26.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(1), pp.
39
48
.10.1016/j.ijmultiphaseflow.2008.08.003
27.
Zivi
,
S. M.
,
1964
, “
Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
,
86
, pp.
247
252
.10.1115/1.3687113
28.
Zivi
,
S. M.
,
1964
, “
Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
,
86
, pp.
247
252
. 10.1115/1.3687113
29.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
30.
Choi
,
K.
,
Pamitran
,
A. S.
,
Oh
,
C.
, and
Oh
,
J.
,
2007
, “
Boiling Heat Transfer of R-22, R-134a and CO2 in Horizontal Smooth Minichannels
,”
Int. J. Refrig.
,
30
, pp.
1336
1346
.10.1016/j.ijrefrig.2007.04.007
31.
Kim
,
M.
,
Yun
,
R.
, and
Kim
,
Y.
,
2005
, “
Convective Boiling Heat Transfer Characteristics of CO2 in Microchannels
,”
Int. J. Heat Mass Transfer
,
48
, pp.
235
242
.10.1016/j.ijheatmasstransfer.2004.08.019
32.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
,
2009
, “
Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
,
35
, pp.
142
154
.10.1016/j.ijmultiphaseflow.2008.10.004
33.
Cheng
,
L.
, and
Thome
,
J. R.
,
2009
, “
Cooling of Microprocessors Using Flow Boiling of CO2 in a Micro-Evaporator: Preliminary Analysis and Performance Comparison
,”
Appl. Therm. Eng.
,
29
, pp.
2426
2432
.10.1016/j.applthermaleng.2008.12.019
34.
Miller
,
A. F.
,
1999
,
Basic Heat and Mass Transfer
,
2nd ed.
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
35.
Bhunia
,
A.
, and
Chen
,
C. L.
,
2011
, “
On the Scalability of Liquid Microjet Array Impingement Cooling for Large Area Systems
,”
ASME J. Heat Transfer
,
133
, p.
064501
.10.1115/1.4003532
You do not currently have access to this content.