There have been increasing demands and interests in stretchable sensors with the development of flexible or stretchable conductive materials. These sensors can be used for detecting large strain, 3D deformation, and a free-form shape. In this work, a stretchable conductive sensor has been developed using single-walled carbon nanotubes (SWCNTs) and monofunctional acrylate monomers (cyclic trimethylolpropane formal acrylate and acrylate ester). The suggested sensors have been fabricated using a screw-driven microdispensing direct-write (DW) technology. To demonstrate the capabilities of the DW system, effects of dispensing parameters such as the feed rate and material flow rate on created line widths were investigated. Finally, a stretchable conductive sensor was fabricated using proper dispensing parameters, and an experiment for stretchability and resistance change was accomplished. The result showed that the sensor had a large strain range up to 90% with a linear resistance change and gauge factor ∼2.7. Based on the results, it is expected that the suggested DW stretchable sensor can be used in many application areas such as wearable electronics, tactile sensors, 3D structural electronics, etc.

References

1.
Kang
,
I.
,
Schulz
,
M. J.
,
Kim
,
J. H.
,
Shanov
,
V.
, and
Shi
,
D.
,
2006
, “
A Carbon Nanotube Strain Sensor for Structural Health Monitoring
,”
Smart Mater. Struct.
,
15
(
3
), pp.
737
748
.10.1088/0964-1726/15/3/009
2.
O'Connell
,
M. J.
,
2006
,
Carbon Nanotubes, Properties and Applications
,
CRC Press Taylor & Francis Group
,
NW
, pp.
187
188
, Chap. VII.
3.
Shokrieh
,
M. M.
, and
Rafiee
,
R.
,
2010
, “
A Review of the Mechanical Properties of Isolated Carbon Nanotubes and Carbon Nanoyube Composites
,”
Mech. Compos. Mater.
,
46
(
2
), pp.
155
172
.10.1007/s11029-010-9135-0
4.
Sickert
,
D.
,
Taeger
,
S.
,
Kühne
,
I.
,
Mertig
M.
,
Pompe
,
W.
, and
Eckstein
,
G.
,
2006
, “
Strain Sensing With Carbon Nanotube Devices
,”
Solid State Phys.
,
243
(
13
), pp.
3542
3545
.10.1002/pssb.200669123
5.
Tombler
,
T. W.
,
Zhou
,
C.
,
Alexseyev
,
L.
,
Kong
,
J.
,
Dai
,
H.
,
Liu
,
L.
,
Jayanthi
,
C. S.
,
Tang
,
M.
, and
Wu
,
S. Y.
,
2000
, “
Reversible Electromechanical Characteristics of Carbon Nanotubes Under Local Probe Manipulation
,”
Nature (London)
,
405
, pp.
769
772
.10.1038/35015519
6.
Ebbesen
,
T. W.
,
Lezec
,
H. J.
,
Hiura
,
H.
,
Bennett
,
J. W.
,
Ghaemi
,
H. F.
, and
Thio
,
T.
,
1996
, “
Electrical Conductivity of Individual Carbon Nanotubes
,”
Nature (London)
,
382
, pp.
54
56
.10.1038/382054a0
7.
Peng
,
S.
, and
Cho
,
K.
,
2000
, “
Chemical Control of Nanotube Electronics
,”
Nanotechnology
,
11
(
2
), pp.
57
60
.10.1088/0957-4484/11/2/303
8.
Cao
,
J.
,
Wang
,
Q.
, and
Dai
,
H.
,
2003
, “
Electromechanical Properties of Metallic, Quasimetallic, and Semiconducting Carbon Nanotubes Under Stretching
,”
Phys. Rev. Lett.
,
90
(
15
),
157601
.10.1103/PhysRevLett.90.157601
9.
Song
,
X.
,
Liu
,
S.
,
Gan
,
Z.
,
Lv
,
Q.
,
Cao
,
H.
, and
Yan
,
H.
,
2009
, “
Controllable Fabrication of Carbon Nanotube-Polymer Hybrid Thin Film For Strain Sensing
,”
Microelectronic Eng.
,
86
(
11
), pp.
2330
2333
.10.1016/j.mee.2009.04.012
10.
Dharap
,
P.
,
Li
,
Z.
,
Nagarajaiah
,
S.
, and
Barrera
,
E. V.
,
2004
, “
Nanotube Film Based on Single-Wall Carbon Nanotubes for Strain Sensing
,”
Nanotechnology
,
15
(
3
), pp.
379
382
.10.1088/0957-4484/15/3/026
11.
Chang
,
N. K.
,
Su
,
C. C.
, and
Chang
,
S. H.
,
2008
, “
Fabrication of Single-Walled Carbon Nanotube Flexible Strain Sensors With High Sensitivity
,”
Appl. Phys. Lett.
,
92
(
6
),
063501
.10.1063/1.2841669
12.
Maune
,
H.
, and
Bockrath
,
M.
,
2006
, “
Elastomeric Carbon Nanotube Circuits for Local Strain Sensing
,”
Appl. Phys. Lett.
,
89
(
17
),
173131
.10.1063/1.2358821
13.
Lebel
,
L. L.
,
Aissa
,
B.
,
El Khakani
,
M. A.
, and
Therriault
,
D.
,
2010
, “
Ultraviolet-Assisted Direct-Write Fabrication of Carbon Nanotube/Polymer Nanocomposite Microcoils
,”
Adv. Mater.
,
22
(
5
), pp.
592
596
.10.1002/adma.200902192
14.
Ahn
,
B. Y.
,
Lorang
,
D. J.
,
Duoss
,
E. B.
, and
Lewis
,
J. A.
,
2010
, “
Direct-Write Assembly of Microperiodic Planar and Spanning ITO Microelectrodes
,”
Chem. Commun. (London)
,
46
, pp.
7118
7120
.10.1039/C0CC01691H
15.
Ahn
,
B. Y.
,
Lorang
,
D. J.
and
Lewis
,
J. A.
,
2011
, “
Transparent Conductive Grids Via Direct Writing of Silver Nanoparticle Inks
,”
Nanoscale
,
3
, pp.
2700
2702
.10.1039/c1nr10048c
16.
Lewis
,
J. A.
, and
Gratson
,
G. M.
,
2004
, “
Direct Writing in Three Dimensions
,”
Mater. Today
,
7
, pp.
32
39
.10.1016/S1369-7021(04)00344-X
17.
Chen
,
C. P.
,
Li
,
H. X.
, and
Ding
,
H.
,
2007
, “
Modeling and Control of Time-Pressure Dispensing for Semiconductor Manufacturing
,”
Int. J. Autom. Comput.
,
4
(
4
), pp.
422
427
.10.1007/s11633-007-0422-8
18.
Chen
,
X. B.
,
2007
, “
Modeling of Rotary Screw Fluid Dispensing Processes
,”
J. Electron. Packag.
,
129
(
2
), pp.
172
179
.10.1115/1.2721090
19.
Chen
,
X. B.
, and
Kai
,
J.
,
2004
, “
Modeling of Positive-Displacement Fluid Dispensing Processes
,”
IEEE Trans. Electron. Packag. Manuf.
,
27
(
3
), pp.
157
163
.10.1109/TEPM.2004.843083
20.
Chen
,
X. B.
, and
Ke
,
H.
,
2006
, “
Effects of Fluid Properties on Dispensing Processes for Electronics Packaging
,”
IEEE Trans. Electron. Packag. Manuf.
,
29
(
2
), pp.
75
82
.10.1109/TEPM.2006.874964
21.
SR531, Technical Data Sheet, Sartomer USA, LLC, Oaklands Corporate Center, PA
(www.sartomer.com)
22.
Skin Flex III Material Safety Data Sheet, BJB Enterprises, Inc., Tustin, CA (
http://www.bjbenterprises.com)
23.
Jacob
,
F.
,
2010
,
AIP Handbook of Modern Sensors: Physics, Designs and Applications
, 3th ed.,
Springer
,
New York
, pp.
64
–65, Chap. III.
You do not currently have access to this content.