Computer simulation is a practical approach for the accurate study of nanosized materials. In order to produce conductive nano-inks for microelectrodes, we need to simulate different nanoparticles (NPs)’ arrangements to maximize their packing. Even though modeling can be performed on desktop computers using binary packing, this is a time consuming process that may not provide optimal results for practical applications. In this study, we developed a simulation program for a supercomputer to obtain precise results from tertiary packing while reducing the simulation time. The simulation of nanoparticles' packing consists of three different sized particles resulting in a high packing factor of 93.44%. Therefore, the optimal sizes and volumes of particles required for nano-inks with various viscosities can be predetermined. Furthermore, a wide range of applications can be derived such as finding ideal ratios of particles or inks for different mixtures.

References

References
1.
Kim
,
N. S.
,
Han
,
K. N.
, and
Church
,
K. H.
,
2007
, “
Direct Writing Technology for 21st Century Industries—Focus on Micro-Dispensing Deposition Write Technology
,” Transactions of the KSMTE Spring Conference, 2007, pp.
511
515
.
2.
Satake
,
S. I.
,
Sorimachi
,
G.
,
Kanai
,
T.
,
Taniguchi
,
J.
, and
Unno
,
N.
,
2010
, “
Three Dimensional Measurements of Photo-Curing Process With Photo-Curable Resin for UV-Nanoimprint by Micro-Digital-Holographic-PTV
,”
ASME J. Electron. Packag.
,
132
,
031003
.10.1115/1.4001854
3.
Kim
,
N. S.
,
Amert
,
A. K.
,
Woessner
,
S. M.
,
Decker
,
S.
,
Kang
,
S. M.
, and
Han
,
K. N.
,
2007
, “
Effect of Metal Powder Packing on the Conductivity of Nanometal Ink
,”
J. Nanosci. Nanotechnol
,
7
(
11
), pp.
3902
3905
.10.1166/jnn.2007.071
4.
Amert
,
A. K.
,
Oh
,
D. H.
, and
Kim
,
N. S.
,
2010
, “
A Simulation and Experimental Study on Packing on Nano-Inks to Attain Better Conductivity
,”
J. Appl. Phys.
,
108
, pp.
25
30
.10.1063/1.3511687
5.
Zhang
,
Z. P.
,
Liu
,
L. F.
,
Yuan
,
Y. D.
, and
Yu
,
A. B.
,
Yu
,
2001
, “
A Simulation Study of the Effects of Dynamic Variables on the Packing of Spheres
,”
Powder Technol.
,
116
, pp.
23
32
.10.1016/S0032-5910(00)00356-9
6.
Chenf
,
Y. F.
,
Guo
,
S. J.
, and
Lai
,
H. Y.
,
2000
, “
Dynamic Simulation of Random Packing of Spherical Particles
,”
Powder Technol.
,
107
, pp.
123
130
.10.1016/S0032-5910(99)00178-3
7.
Zou
,
R. P.
,
Xu
,
J. Q.
,
Feng
,
C. L.
,
Yu
,
A. B.
,
Johnston
,
S.
, and
Standish
,
N.
,
2003
, “
Packing of Multi-Sized Mixtures of Wet Coarse Spheres
,”
Powder Technol.
,
130
, pp.
77
83
.10.1016/S0032-5910(02)00229-2
8.
Sobolev
,
K.
, and
Amirjanov
,
A.
,
2004
, “
A Simulation Model of the Dense Packing of Particulate Materials
,”
Adv. Powder Technol.
,
15
(
3
), pp.
365
376
.10.1163/156855204774150154
9.
Sobolev
,
K.
, and
Amirjanov
,
A.
,
2004
, “
The Development of a Simulation Model of the Dense Packing of Large Particulate Assemblies
,”
Powder Technol.
,
141
, pp.
155
160
.10.1016/j.powtec.2004.02.013
10.
Robinson
,
D. A.
, and
Friedman
,
S. P.
,
2005
, “
Electrical Conductivity and Dielectric Permittivity of Sphere Packing: Measurements and Modeling of Cubic Lattices, Randomly Packed Monosize Spheres and Multi-Size Mixtures
,”
Physica A
,
358
(
4
), pp.
447
465
.10.1016/j.physa.2005.03.054
11.
Gan
,
M.
,
Gopinathan
,
N.
,
Jia
,
X.
, and
Williams
,
R. A.
,
2004
, “
Predicting Packing Characteristics of Particles of Arbitrary Shapes
,”
KONA
,
22
, pp.
82
93
.
12.
Brouwers
,
H. J. H.
,
2006
, “
Particle-Size Distribution and Packing Fraction of Geometric Random
,”
Physical Rev. E
,
74
,
031309
.10.1103/PhysRevE.74.031309
13.
Yang
,
R. Y.
,
Zou
,
R. P.
,
Dong
,
K. J.
,
An
,
X. Z.
, and
Yu
,
A.
,
2007
, “
Simulation of the Packing of Cohesive Particles
,”
Comput. Phys. Commun.
,
177
, pp.
206
209
.10.1016/j.cpc.2007.02.043
14.
Siiria
,
S.
, and
Yliruusi
,
J.
,
2007
, “
Particle Packing Simulation Based on Newtonian Mechanics
,”
Powder Technol.
,
174
, pp.
82
92
.10.1016/j.powtec.2007.01.001
15.
Zhang
,
Z. P.
,
Liu
,
L. F.
,
Yuan
,
Y. D.
, and
Yu
,
A. B.
,
2001
, “
A Simulation Study of the Effects of Dynamic Variables on the Packing of Spheres
,”
Powder Technol.
,
116
, pp.
23
32
.10.1016/S0032-5910(00)00356-9
16.
Riyadh
,
A. R.
, and
Mustafa
,
A.
,
2007
, “
Simulation of Random Packing of Polydisperse Paricle
,”
Powder Technol.
,
176
, pp.
47
55
.10.1016/j.powtec.2007.02.007
17.
Smith
,
L. N.
, and
Midha
,
P. S.
,
1997
, “
Computer Simulation of Morphology and Packing Behavior of Irregular Particles, for Predicting Apparent Powder Densities
,”
Comput. Mater. Sci.
,
7
, pp.
377
383
.10.1016/S0927-0256(97)00003-7
18.
Chen
,
Z.
,
Gibilaro
,
L. G.
, and
Jand
,
N.
,
2003
, “
Particle Packing Constraints in Fluid–Particle System Simulation
,”
Comput. Chem. Eng.
,
29
(
5
), pp.
681
687
.10.1016/S0098-1354(02)00258-2
19.
Latham
,
J. P.
,
Munjiza
,
A.
, and
Lu
,
Y.
,
2002
, “
On the Prediction of Void Porosity and Packing of Rock Particulates
,”
Powder Technol.
,
125
(
1
), pp.
10
27
.10.1016/S0032-5910(01)00493-4
20.
Lochmann
,
K.
,
Oger
,
L.
, and
Stoyan
,
D.
,
2006
, “
Statistical Analysis of Random Sphere Packings With Variable Radius Distribution
,”
Solid State Sci.
,
8
(
12
), pp.
1397
1413
.10.1016/j.solidstatesciences.2006.07.011
21.
Kim
,
J. C.
,
Martin
,
D. M.
, and
Lim
,
C. S.
,
2002
, “
Effect of Rearrangement on Simulated Particle Packing
,”
Powder Technol.
,
126
(
3
), pp.
211
216
.10.1016/S0032-5910(01)00485-5
22.
Jia
,
X.
, and
Williams
,
R. A.
,
2001
, “
A Packing Algorithm for Particles of Arbitrary Shapes
,”
Powder Technol.
,
120
(
3
), pp.
175
186
.10.1016/S0032-5910(01)00268-6
23.
Jung
,
H. K.
,
Ko
,
H.
,
Kim
,
S. S.
, “
Large Amounts of Data Processing by Using Supercomputer
,”
Trans. KIIT
, pp.
487
491
.
You do not currently have access to this content.