Microstructure development of 35 nm silver nanoparticles during the low temperature sintering was examined in situ as the ambient temperature increased from room temperature up to 450 °C using X-ray diffraction and electron microscopy techniques. Measured particle size increased rapidly up to ∼90 nm in the temperature range between 130 and 250 °C, which is thought to be from the atomic diffusion on the surfaces of nanoparticles. On the other hand, further increase of the annealing temperature results in little or almost no change in the grain size. Therefore, the sintering effect due to the surface diffusion of silver atoms is active only on the surface of nanoparticles whose size is less than ∼90 nm, indicating enhanced atomic mobility of silver atoms on the surface of nanoparticles.

References

References
1.
Lu
,
D.
,
Tong
,
Q.
, and
Wong
,
C.
,
1999
, “
Conductivity Mechanisms of Isotropic Conductive Adhesives (ICAs)
,”
IEEE Trans. Electr. Packag. Manuf.
,
22
(
3
), pp.
223
227
.10.1109/6104.795857
2.
Li
,
Y.
,
Moon
,
K.
, and
Wong
,
C. P.
,
2005
, “
Electronics Without Lead
,”
Science
,
308
, pp.
1419
1420
.10.1126/science.1110168
3.
Yim
,
M.
,
Li
,
Y.
,
Moon
,
K. S.
,
Paik
,
K. W.
, and
Wong
,
C. P.
,
2008
, “
Review of Recent Advances in Electrically Conductive Adhesive Materials and Technologies in Electronic Packaging
,”
J. Adhes. Sci. Technol.
,
22
(
14
), pp.
1593
1630
.10.1163/156856108X320519
4.
Lu
,
D.
, and
Wong
,
C. P.
,
2000
, “
Development of Conductive Adhesives for Solder Replacement
,”
IEEE Trans. Comput. Packag. Technol.
,
23
(
4
), pp.
620
626
.10.1109/6144.888844
5.
Moon
,
K. S.
,
Wu
,
J.
, and
Wong
,
C. P.
,
2003
, “
Improved Stability of Contact Resistance of Low Melting Point Alloy Incorporated Isotropically Conductive Adhesives
,”
IEEE Trans. Comput. Packag. Technol.
,
26
(
2
), pp.
375
381
.10.1109/TCAPT.2003.815101
6.
Moon
,
K.
,
Rockett
,
C.
,
Kretz
,
C.
,
Burgoyne
,
W. F.
, and
Wong
,
C. P.
,
2003
, “
Improvement of Adhesion and Electrical Properties of Reworkable Thermoplastic Conductive Adhesives
,”
J. Adhes. Sci. Technol.
,
17
(
13
), pp.
1785
1800
.10.1163/156856103322538688
7.
Gwinn
,
J. P.
, and
Webb
,
R. L.
,
2003
, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.
,
34
(
3
), pp.
215
222
.10.1016/S0026-2692(02)00191-X
8.
Chung
,
D. D. L.
,
2001
, “
Thermal Interface Materials
,”
J. Mater. Eng. Perf.
,
10
(
1
), pp.
56
59
.10.1361/105994901770345358
9.
Datta
,
S.
,
Keller
,
K.
,
D.
Schulz
,
D.
Webster
, “
Conductive Adhesives From Low-VOC Silver Inks for Advanced Microelectronics Applications
,”
IEEE Trans. Comput. Packag. Technol.
,
1
(
1
), pp.
69
75
.10.1109/TCPMT.2010.2101390
10.
Lee
,
Y.
,
Kim
,
C.
,
Shin
,
D.
, and
Kim
,
Y.
, “
Printed UHF RFID Antennas With High Efficiencies Using Nano-Particle Silver Ink
,”
J. Nanosci. Nanotechnol.
,
11
(
7
), pp.
6425
6428
.10.1166/jnn.2011.4390
11.
Lee
,
H.
,
Chou
,
K.
,
Huang
,
K.
,
2005
, “
Inkjet Printing of Nanosized Silver Colloids
,”
Nanotechnology
,
16
, pp.
2436
2441
.10.1088/0957-4484/16/10/074
12.
Perelaer
,
J.
,
de Gans
,
B.
, and
Schubert
,
B. U.
,
2006
, “
Ink-Jet Printing and Microwave Sintering of Conductive Silver Tracks
,”
Adv. Mater.
,
18
, pp.
2101
2104
.10.1002/adma.200502422
13.
Bai
,
J.
,
Lei
,
T.
,
Calata
,
J.
, and
Lu
,
G.
,
2007
, “
Control of Nanosilver Sintering Attained Through Organic Binder Burnout
,”
J. Mater. Res.
,
22
, pp.
3494
3500
.10.1557/JMR.2007.0440
14.
Wu
,
J.
,
Hsu
,
S.
,
Tsai
,
M.
, and
Hwang
,
W.
,
2009
, “
Conductive Silver Patterns via Ethylene Glycol Vapor Reduction of Ink-Jet Printed Silver Nitrate Tracks on a Polyimide Substrate
,”
Thin Solid Films
,
517
, pp.
5913
5917
.10.1016/j.tsf.2009.04.049
15.
Reinhold
,
I.
,
Hendriks
,
C.
,
Eckardt
,
R.
,
Kranenburg
,
J.
,
Perelaer
,
J.
,
Baumann
,
R.
, and
Shubert
,
U.
,
2009
, “
Argon Plasma Sintering of Inkjet Printed Silver Tracks on Polymer Substrates
,”
J. Mater. Chem.
,
19
, pp.
3384
3388
.10.1039/b823329b
16.
Valeton
,
J.
,
Hermans
,
K.
,
Bastiaansen
,
C.
,
Broer
,
D.
, and
Perelaer
,
J.
,
2010
, “
Room Temperature Preparation of Conductive Silver Features Using Spin-Coating and Inkjet Printing
,”
J. Mater. Chem.
,
20
, pp.
543
546
.10.1039/b917266a
17.
Wu
,
J.
,
Hsu
,
S.
,
Tsai
,
M.
, and
Hwang
,
W.
,
2010
, “
Direct Inkjet Printing of Silver Nitrate/ Poly (N-vinyl-2-pyrrolidone) Inks To Fabricate Silver Conductive Lines
,”
J. Phys. Chem. C
,
114
, pp.
4659
4662
.10.1021/jp100326k
18.
Jahn
,
S.
,
Blaudeck
,
T.
,
Baumann
,
R.
,
Jakob
,
A.
, and
Ecorchard
,
P.
,
2010
, “
Inkjet Printing of Conductive Silver Patterns by Using the First Aqueous Particle-Free MOD Ink Without Additional Stabilizing Ligands
,”
Chem. Mater.
,
22
, pp.
3067
3071
.10.1021/cm9036428
19.
Magdassi
,
S.
,
Grouchko
,
M.
,
Berezin
,
O.
, and
Kamyshny
,
A.
,
2010
, “
Triggering the Sintering of Silver Nanoparticles at Room Temperature
,”
ACS Nano
,
4
, pp.
1943
1948
.10.1021/nn901868t
20.
Anto
,
B.
,
Sivaramakrishnan
,
S.
,
Chua
,
L.
, and
Ho
,
P.
,
2010
, “
Hydrophilic Sparse Ionic Monolayer-Protected Metal Nanoparticles: Highly Concentrated Nano-Au and Nano-Ag ‘Inks’ That Can Be Sintered to Near-Bulk Conductivity at 150 °C
,”
Adv. Funct. Mater.
,
20
, pp.
296
303
.10.1002/adfm.200901336
21.
Groza
,
J.
,
1999
, “
Nanosintering
,”
Nanostruct. Mater.
,
12
, pp.
987
992
.10.1016/S0965-9773(99)00284-6
22.
Qi
,
W. H.
, and
Wang
,
M. P.
,
2002
, “
Size Effect on the Cohesive Energy of Nanoparticle
,”
J. Mat. Sci. Lett.
,
21
, pp.
1743
1745
.10.1023/A:1020904317133
23.
Jiang
,
H.
,
Moon
,
K.
,
Dong
,
H.
,
Hua
,
F.
, and
Wong
,
C. P.
,
2006
, “
Size-Dependent Melting Properties of Tin Nanoparticles
,”
Chem. Phys. Lett.
,
429
, pp.
492
496
.10.1016/j.cplett.2006.08.027
24.
Dong
,
H.
,
Moon
,
K. S.
, and
Wong
,
C. P.
,
2004
, “
Molecular Dynamics Study on Coalescence of Cu Nanoparticles and Their Deposition on Cu Substrate
,”
J. Electron. Mater.
,
33
(
11
), pp.
1326
1330
.10.1007/s11664-004-0161-3
25.
Jiang
,
H.
,
Moon
,
K.
,
Hua
,
F.
, and
Wong
,
C. P.
,
2007
, “
Synthesis, Thermal and Wetting Properties of Tin/Silver Alloy Nanoparticles for Low Melting Point Lead-Free Solders
,”
Chem. Mater.
,
19
(
18
), pp.
4482
4485
.10.1021/cm0709976
26.
Dong
,
H.
,
Moon
,
K. S.
, and
Wong
,
C. P.
,
2005
, “
Molecular Dynamics Study of Nanosilver Particles for Low-Temperature Lead-Free Interconnect Applications
,”
J. Electron. Mater.
,
34
(
1
), pp.
40
45
.10.1007/s11664-005-0178-2
27.
Moon
,
K. S.
,
Dong
,
H.
,
Maric
,
R.
,
Pothukuchi
,
S.
,
Li
,
Y.
, and
Wong
,
C. P.
,
2005
, “
Thermal Behavior of Silver Nano Particles for Low Temperature Interconnect Applications
,”
J. Electron. Mater.
,
34
(
2
), pp.
168
175
.10.1007/s11664-005-0229-8
28.
Jiang
,
H.
,
Moon
,
K.
,
Li
,
Y.
, and
Wong
,
C. P.
,
2006
, “
Surface Functionalized Silver Nanoparticles for Ultrahigh Conductive Polymer Composites
,”
Chem. Mater.
,
18
(13), pp.
2969
2973
.10.1021/cm0527773
29.
Kim
,
N.
,
Amert
,
A.
,
Woessner
,
S.
,
Decker
,
M.
,
Kang
,
S.
, and
Han
,
K.
,
2007
, “
Effect of Metal Powder Packing on the Conductivity of Nanometal Ink
,”
J. Nanosci. Nanotechnol.
,
7
(
11
), pp.
3902
3905
.10.1166/jnn.2007.071
30.
Zhang
,
R. W.
,
Moon
,
K. S.
,
Lin
,
W.
, and
Wong
,
C. P.
,
2010
, “
Preparation of Highly Conductive Polymer Nanocomposites by Low Temperature Sintering of Silver Nanoparticles
,”
J. Mater. Chem.
,
20
, pp.
2018
2023
.10.1039/b921072e
31.
Hunt
,
A.
,
Jiang
,
Y.
,
Zhao
,
Z.
, and
Venugopal
,
G.
,
2010
, “
Chemical Vapor Condensation and their Electronic Applications
,”
Nano-Bio- Electronic, Photonic and MEMS Packaging
,
C. P.
Wong
,
K.
Moon
, and
Y.
Li
, eds.,
Springer
,
New York
.
You do not currently have access to this content.