With the increasing output power of the integrated circuit chips, the heat flux involved is being accordingly increased. In such situation, the air has almost reached its limit of cooling capacity, and thus the liquid cooling technology incorporating microchannel heat sinks is desired to cool the electronic chips in order to remove more heat loads. However, these microchannel heat sinks are often designed to be straight with rectangular cross section. In this study, on the basis of a straight microchannel having rectangular cross section, a kind of transversal wavy microchannel is designed and then the laminar flow and heat transfer are investigated numerically. It is shown that for removing the identical load, the transversal wavy microchannel has great potential to reduce pressure drop compared to the straight microchannel, especially for higher wave amplitude at the same Reynolds number, indicating the overall thermal performance of the transversal wavy microchannel is superior to the traditional straight rectangular microchannel. It is suggested such wavy microchannel can be used to cool chips effectively with much smaller pressure drop penalty.

References

References
1.
Satish G.
Kandlikar.
,
2005
, “
High Flux Heat Removal With Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
,
26
, pp.
5
14
.10.1080/01457630591003655
2.
Mahajan
,
R.
,
Chiu
,
C.-P.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc.-IEEE
,
94
, pp.
1476
1486
.10.1109/JPROC.2006.879800
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
, pp.
126
129
.10.1109/EDL.1981.25367
4.
Sasaki
,
S.
, and
Kishimoto
,
T.
,
1986
, “
Optimal Structure for Microgrooved Cooling Fin for High-Power LSI Devices
,”
Electron. Lett.
,
22
, pp.
1332
1334
.10.1049/el:19860916
5.
Xie
,
X. L.
,
Liu
,
Z. J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
29
, pp.
64
74
.10.1016/j.applthermaleng.2008.02.002
6.
Xie
,
X. L.
,
Tao
,
W. Q.
, and
He
,
Y. L.
,
2007
, “
Numerical Study of Turbulent Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
ASME J. Electron. Packag.
,
129
, pp.
247
255
.10.1115/1.2753887
7.
Manglik
,
R. M.
,
Zhang
,
J.
, and
Muley
,
A.
,
2005
, “
Low Reynolds Number Forced Convection in Three-Dimensional Wavy-Plate-Fin Compact Channels: Fin Density Effects
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1439
1449
.10.1016/j.ijheatmasstransfer.2004.10.022
8.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2760
2772
.10.1016/j.ijheatmasstransfer.2010.02.022
9.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W. Q.
, and
Joshi
,
Y.
,
2011
, “
Parametric Numerical Study of Flow and Heat Transfer in Microchannels With Wavy Walls
,”
ASME J. Heat Transfer
,
133
,
051702
.10.1115/1.4003284
10.
Zhang
,
H. Y.
,
Pinjala
,
D.
,
Wong
,
T. N.
,
Toh
,
K. C.
, and
Joshi
,
Y. K.
,
2005
, “
Single-Phase Liquid Cooled Microchannel Heat Sink for Electronic Packages
,”
Appl. Therm. Eng.
,
25
, pp.
1472
1487
.10.1016/j.applthermaleng.2004.09.014
11.
Xie
,
G. N.
,
Liu
,
Y. Q.
,
Zhang
,
W. H.
, and
Sunden
,
B.
, “
Computational Study and Optimization of Laminar Heat Transfer and Pressure Loss of Double-Layer Microchannels for Chip Liquid Cooling
,”
ASME J. Thermal Sci. Eng. Appl.
, (in press).
12.
Xie
,
G. N.
,
Liu
,
Y. Q.
,
Sunden
,
B.
,
Zhang
,
W. H.
, and
Zhao
,
J.
,
2012
, “
Numerical Investigation of Heat Transfer and Pressure Loss of Double-Layer Microchannels for Chip Liquid Cooling
,”
Proceedings of 2012 ASME Summer Heat Transfer Conference
(HT2012),
Puerto Rico
, July 8–12, ASME Paper No. HT2012-58021.
13.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
, pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
14.
Shah
,
R. K.
,
1975
, “
Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of Arbitrary Geometry
,”
Int. J. Heat Mass Transfer
,
18
, pp.
849
862
.10.1016/0017-9310(75)90176-3
15.
Tamayol
,
A.
, and
Bahrami
,
M.
,
2010
, “
Laminar Flow in Microchannels With Noncircular Cross Section
,”
ASME J. Fluids Eng.
,
132
, p.
111201
.10.1115/1.4001973
16.
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2010
, “
Heat Transfer in Trapezoidal Microchannels of Various Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
53
, pp.
365
375
.10.1016/j.ijheatmasstransfer.2009.09.020
17.
Ding
,
J.
, and
Manglik
,
R. M.
,
1996
, “
Analytical Solutions for Laminar Fully Developed Flows in Double-Sine Shaped Ducts
,”
Heat Mass Transfer
,
31
, pp.
269
277
.10.1007/BF02328619
You do not currently have access to this content.