The effects of slot width for confined, laminar impinging slot jets of millimeter-scale are considered, including experimental measurements of spatially resolved distributions of local Nusselt numbers measured on a constant heat flux surface. The effects of Reynolds number, nozzle-to-plate distance, and dimensional slot width on the local Nusselt number are investigated for slot nozzle width B values of 0.5 mm, 1.0 mm, and 1.5 mm. Reynolds numbers Re range from 120 to 200, nozzle-to-plate distances H/B vary from 0.75 to 12.5, and the nozzle aspect ratio y/B is 50. Observed are different stagnation point Nusselt number Nuo variations with Re, H/B, and B, where the onset of unsteadiness, and the intermittent flapping motion of the jet column are both associated with important variations to local, stagnation region Nusselt numbers Nuo, as experimental configuration and condition change. The variations of these stagnation-point Nusselt numbers associated with these two modes of unsteadiness are characterized by correlations which provide the dependence upon Reynolds number and normalized nozzle-to-plate distance ratio, H/B, for different dimensional values of B. Also presented are stagnation region Nusselt number variations, for steady, impingement jets at values of H/B less than 4.6–7.8. These are characterized by three separate regimes of behavior, each of which shows significantly different Nuo dependence upon Re, H/B, and B.

References

References
1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
,
Academic Press
,
New York
, Chap. 13, pp.
1
60
.
2.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
, pp.
111
134
.10.1016/0894-1777(93)90022-B
3.
Beitelmal
,
A. H.
,
Saad
,
M. A.
, and
Patel
,
C. D.
,
2000
, “
The Effect of Inclination on the Heat Transfer Between a Flat Surface and Impinging Two-Dimensional Air Jet
,”
Int. J. Heat Fluid Flow
,
21
(
2
),
156
163
.10.1016/S0142-727X(99)00080-6
4.
Lin
,
Z. H.
,
Chou
,
Y. J.
, and
Hung
,
Y. H.
,
1997
, “
Heat Transfer Behaviors of a Confined Slot Jet Impingement
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1095
1107
.10.1016/0017-9310(96)00135-4
5.
Choo
,
K. S.
,
Youn
,
Y. J.
,
Kim
,
S. J.
, and
Lee
,
D. H.
,
2009
, “
Heat Transfer Characteristics of a Micro-Scale Impinging Slot Jet
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3169
3175
.10.1016/j.ijheatmasstransfer.2009.02.015
6.
Zhou
,
D. W.
, and
Lee
,
S. J.
,
2007
, “
Forced Convective Heat Transfer With Impinging Rectangular Jets
,”
Int. J. Heat Mass Transfer
,
50
, pp.
1916
1926
.10.1016/j.ijheatmasstransfer.2006.09.022
7.
Cho
,
J. R.
,
2006
, “
Numerical Observations of Bifurcating Plane Impinging Jet in a Confined Channel
,”
J. Visualization
,
9
(
4
), pp.
361
362
.10.1007/BF03181774
8.
Lee
,
G. B.
,
Kuo
,
T. Y.
, and
Wu
,
W. Y.
,
2002
, “
A Novel Micromachined Flow Sensor Using Periodic Flapping Motion of a Planar Jet Impinging on a V-Shaped Plate
,”
Exp. Therm. Fluid Sci.
,
26
, pp.
435
444
.10.1016/S0894-1777(02)00155-3
9.
Lee
,
H. G.
,
Yoon
,
H. S.
, and
Ha
,
M. Y.
,
2008
, “
A Numerical Investigation on the Fluid Flow and Heat Transfer in the Confined Impinging Slot Jet in the Low Reynolds Number Region For Different Channel Height
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4055
4068
.10.1016/j.ijheatmasstransfer.2008.01.015
10.
Laschefski
,
H.
,
Cziesla
,
T.
,
Biswas
,
G.
, and
Mitra
,
N. K.
,
1996
, “
Numerical Investigation of Heat Transfer by Rows of Rectangular Impinging Jets
,”
Numer. Heat Transfer, Part A
,
30
(
1
), pp.
87
101
.10.1080/10407789608913830
11.
Fujimoto
,
H.
,
Takuda
,
H.
,
Hatta
,
N.
, and
Viskanta
,
R.
,
1999
, “
Numerical Simulation of Transient Cooling of a Hot Solid by an Impinging Free Surface Jet
,”
Numer. Heat Transfer, Part A
,
36
(
8
), pp.
767
780
.10.1080/104077899274444
12.
Chatterjee
,
A.
, and
Deviprasath
,
L. J.
,
2001
, “
Heat Transfer in Confined Laminar Axisymmetric Impinging Jets at Small Nozzle-Plate Distances: The Role of Upstream Vorticity Diffusion
,”
Numer. Heat Transfer, Part A
,
39
(
8
), pp.
777
800
.10.1080/10407780152121146
13.
Chatterjee
,
A.
,
Dhingra
,
S. C.
, and
Kapur
,
S. S.
,
2002
, “
Laminar Impinging Jet Heat Transfer With a Purely Viscous Inelastic Fluid
,”
Numer. Heat Transfer, Part A
,
42
(
1–2
), pp.
193
213
.10.1080/10407780290059503
14.
Graminho
,
D. R.
, and
De Lemos
,
M. J. S.
,
2008
, “
Laminar Confined Impinging Jet Into a Porous Layer
,”
Numer. Heat Transfer, Part A
,
54
(
2
), pp.
151
177
.10.1080/10407780802084397
15.
De Lemos
,
M. J. S.
, and
Fischer
,
C.
,
2008
, “
Thermal Analysis of an Impinging Jet On a Plate With and Without a Porous Layer
,”
Numer. Heat Transfer, Part A
,
54
(
11
), pp.
1022
1041
.10.1080/10407780802473590
16.
Demircan
,
T.
, and
Turkoglu
,
H.
,
2010
, “
The Numerical Analysis of Oscillating Rectangular Impinging Jets
,”
Numer. Heat Transfer, Part A
,
58
(
2
), pp.
146
161
.10.1080/10407782.2010.496669
17.
Chiriac
,
V. A.
, and
Ortega
,
A.
,
2001
, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1237
1248
.10.1016/S0017-9310(01)00224-1
18.
Lee
,
D. H.
,
Bae
,
J. R.
,
Park
,
H. J.
,
Lee
,
J. S.
, and
Ligrani
,
P. M.
,
2011
, “
Confined, Milliscale Unsteady Laminar Impinging Slot Jets and Surface Nusselt Numbers
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2408
2418
.10.1016/j.ijheatmasstransfer.2011.02.021
19.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Ligrani
,
P. M.
,
2007
, “
Jet Impingement Cooling of Chips Equipped With Multiple Cylindrical Pedestal Fins
,”
ASME Trans. J. Electron. Packag.
,
129
(
3
), pp.
221
228
.10.1115/1.2753884
20.
Chung
,
Y. S.
,
Lee
,
D. H.
, and
Ligrani
,
P. M.
,
2005
, “
Jet Impingement Cooling of Chips Equipped With Cylindrical Pedestal Profile Fins
,”
ASME Trans. J. Electron. Packag.
,
127
(
2
), pp.
106
112
.10.1115/1.1849235
21.
Hsu
,
C. T.
,
Kuang
,
J.
, and
Sun
,
J. H.
,
2001
, “
Flapping Instability of Vertically Impinging Turbulent Plane Jet in Shallow Water
,”
J. Eng. Mech.
,
127
, pp.
411
420
.10.1061/(ASCE)0733-9399(2001)127:5(411)
22.
Durst
,
F.
,
Pereira
,
J. C. F.
, and
Tropea
,
C.
,
1993
, “
The Plane Symmetric Sudden Expansion Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
248
, pp.
567
581
.10.1017/S0022112093000916
23.
Lee
,
D. H.
,
Chung
,
Y. S.
, and
Kim
,
M. G.
,
1999
, “
Turbulent Heat Transfer From a Convex Hemispherical Surface to a Round Impinging Jet
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1147
1156
.10.1016/S0017-9310(98)00174-4
24.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
25.
Chen
,
Y. C.
,
Ma
,
C. F.
,
Qin
,
M.
, and
Li
,
X. Y.
,
2006
, “
Forced Convective Heat Transfer With Impinging Slot Jets of Meso-Scale
,”
Int. J. Heat Mass Transfer
,
49
, pp.
406
410
.10.1016/j.ijheatmasstransfer.2005.07.024
26.
Lee
,
H. G.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2005
, “
A Numerical Study on the Fluid Flow and Heat Transfer in the Confined Jet Flow in the Presence of Magnetic Field
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5297
5309
.10.1016/j.ijheatmasstransfer.2005.07.025
You do not currently have access to this content.