This article is focused on the optimization and design of a multipass branching microchannel heat sink for high heat flux electronics cooling applications. A multiphysics topology optimization method is used to arrive at two different branching channel solutions for the cooling of a heated plate. These optimization results are combined and synthesized into a unique multipass manifold microchannel heat sink design that has both jet and channel based characteristics. Numerical experiments for a representative electronics package were completed to evaluate the heat sink thermal and fluid performance. It is found that the derived cold plate exhibits favorable heat transfer with low pressure drop due to multiple passes through the branching microchannels. In addition to numerical results, ongoing prototype development for concept validation is described.

References

References
1.
Garimella
,
S. V.
, and
Fleischer
,
A. S.
,
2007
,
Thermal Challenges in Next Generation Electronic Systems
,
Millpress
,
Rotterdam
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electronics Device Lett.
,
EDL-2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
3.
Weisberg
,
A.
, and
Bau
,
H. H.
,
1992
, “
Analysis of Microchannels for Integrated Cooling
,”
Int. J. Heat Mass Transfer
,
35
(
10
), pp.
2465
2474
.10.1016/0017-9310(92)90089-B
4.
Garimella
,
S. V.
, and
Singhal
,
V.
,
2004
, “
Single-Phase Flow and Heat Transport and Pumping Considerations in Microchannel Heat Sinks
,”
Heat Transfer Eng.
,
25
(
1
), pp.
15
25
.10.1080/01457630490248241
5.
Harpole
,
G. M.
, and
Eninger
,
J. E.
,
1991
, “
Micro-Channel Heat Exchanger Optimization
,” Proceedings of the 7th
IEEE
SEMI-THERM Symposium, Phoenix, AZ, Feb. 12–14, pp.
59
63
.10.1109/STHERM.1991.152913
6.
Kim
,
Y. I.
,
Chun
,
J. E.
,
Kim
,
J. T.
,
Pak
,
B. C.
, and
Baek
,
B. J.
,
1998
, “
Forced Air Cooling by Using Manifold Microchannel Heat Sinks
,”
KSME Int. J.
,
12
(
4
), pp.
709
718
.10.1007/BF02945732
7.
Mandelbrot
,
B. B.
,
1983
,
The Fractal Geometry of Nature
,
W.H. Freeman
,
New York
.
8.
Bejan
,
A.
,
1997
, “
Constructal Tree Network for Fluid Flow Between a Finite-Size Volume and One Source or Sink
,”
Rev. Gen. Therm.
,
36
(
8
), pp.
592
604
.10.1016/S0035-3159(97)89986-2
9.
Chen
,
Y.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2643
2648
.10.1016/S0017-9310(02)00013-3
10.
Pence
,
D.
,
2002
, “
Reduced Pumping Power and Wall Temperature in Microchannel Heat Sinks With Fractal-Like Branching Channel Networks
,”
Microscale Thermophys. Eng.
,
6
(
4
), pp.
319
330
.10.1080/10893950290098359
11.
Rocha
,
L. A. O.
,
Lorente
,
S.
, and
Bejan
,
A.
,
2009
, “
Tree-Shaped Vascular Wall Designs for Localized Intense Cooling
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4535
4544
.10.1016/j.ijheatmasstransfer.2009.03.003
12.
Pence
,
D.
,
2010
, “
The Simplicity of Fractal-Like Flow Networks for Effective Heat and Mass Transport
,”
Exp. Therm. Fluid Sci.
,
34
(
4
), pp.
474
486
.10.1016/j.expthermflusci.2009.02.004
13.
Wang
,
X.-Q.
,
Xu
,
P.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2010
, “
Flow and Thermal Characteristics of Offset Branching Network
,”
Int. J. Therm. Sci.
,
49
(
2
), pp.
272
280
.10.1016/j.ijthermalsci.2009.07.019
14.
Dede
,
E. M.
,
2010
, “
Multiphysics Optimization of Hierarchical Thermal-Fluid Structures
,”
Proceedings of the 9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics
, Sydney, Australia, July 19–23, p.
292
.
15.
Dede
,
E. M.
, and
Liu
,
Y.
,
2011
, “
Scale Effects on Thermal-Fluid Performance of Optimized Hierarchical Structures
,” Proceedings of the
ASME/JSME
8th Joint Thermal Engineering Conference, Honolulu, HI, March 13–17, Paper No. AJTEC2011-44082, pp. T10022–T10022-8.10.1115/AJTEC2011-44082
16.
Mudawar
,
I.
,
2011
, “
Two-Phase Micro-Channel Heat Sinks: Theory, Applications and Limitations
,” Proceedings of the
ASME
/JSME 8th Joint Thermal Engineering Conference, Honolulu, HI, March 13–17, Paper No. AJTEC2011-44005.10.1115/AJTEC2011-44005
17.
Barrau
,
J.
,
Chemisana
,
D.
,
Rosell
,
J.
,
Tadrist
,
L.
, and
Ibanez
,
M.
,
2010
, “
An Experimental Study of a New Hybrid Jet Impingement/Micro-Channel Cooling Scheme
,”
Appl. Therm. Eng.
,
30
(
14–15
), pp.
2058
2066
.10.1016/j.applthermaleng.2010.05.013
18.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2287
2297
.10.1016/S0017-9310(98)00017-9
19.
Wei
,
X.
, and
Joshi
,
Y.
,
2003
, “
Optimization Study of Stacked Micro-Channel Heat Sinks for Micro-Electronic Cooling
,”
IEEE Trans. Compon., Packag. Technol.
,
26
(
1
), pp.
55
61
.10.1109/TCAPT.2003.811473
20.
Wei
,
X.
, and
Joshi
,
Y.
,
2004
, “
Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components
,”
ASME J. Electron. Packag.
,
126
(
1
), pp.
60
66
.10.1115/1.1647124
21.
Skandakumaran
,
P.
,
Ortega
,
A.
,
Jamal-Eddine
,
T.
, and
Vaidyanathan
,
R.
,
2004
, “
Multi-Layered SiC Microchannel Heat Sinks—Modeling and Experiment
,”
Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
ITHERM '04
, Vol.
1
, Las Vegas, June 1–4, pp.
352
360
.10.1109/ITHERM.2004.1319196
22.
Calame
,
J. P.
,
Park
,
D.
,
Bass
,
R.
,
Myers
,
R. E.
, and
Safier
,
P. N.
,
2009
, “
Investigation of Hierarchically Branched-Microchannel Coolers Fabricated by Deep Reactive Ion Etching for Electronics Cooling Applications
,”
ASME J. Heat Transfer
,
131
(
5
), pp.
051401
.10.1115/1.3001017
23.
Paulraj
,
P.
, and
Paul
,
B. K.
,
2011
, “
Metal Microchannel Lamination Using Surface Mount Adhesives for Low-Temperature Heat Exchangers
,”
J. Manuf. Process
,
13
(
2
), pp.
85
95
.10.1016/j.jmapro.2011.01.001
24.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization—Theory, Methods and Applications
,
2nd ed.
,
Springer
,
Berlin.
25.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in matlab
,”
Struct. Multidiscip. Optim
,
21
(
2
), pp.
120
127
.10.1007/s001580050176
26.
Borvall
,
T.
, and
Petersson
,
J.
,
2003
, “
Topology Optimization of Fluids in Stokes Flow
,”
Int. J. Numer. Methods Fluid
,
41
(
1
), pp.
77
107
.10.1002/fld.426
27.
Yoon
,
G. H.
,
2010
, “
Topological Design of Heat Dissipating Structure With Forced Convective Heat Transfer
,”
J. Mech. Sci. Technol
,
24
(
6
), pp.
1225
1233
.10.1007/s12206-010-0328-1
28.
Olesen
,
L. H.
,
Okkels
,
F.
, and
Bruus
,
H.
,
2006
, “
A High-Level Programming-Language Implementation of Topology Optimization Applied to Steady-State Navier-Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
65
(
7
), pp.
975
1001
.10.1002/nme.1468
29.
Iga
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2009
, “
Topology Optimization for Thermal Conductors Considering Design-Dependent Effects, Including Heat Conduction and Convection
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2721
2732
.10.1016/j.ijheatmasstransfer.2008.12.013
30.
Andreasen
,
C. S.
,
Gersborg
,
A. R.
, and
Sigmund
,
O.
,
2008
, “
Topology Optimization for Microfluidic Mixers
,”
Int. J. Numer. Methods Fluid
,
61
(
5
), pp.
498
513
.10.1002/fld.1964
31.
Dede
,
E. M.
,
2010
, “
Multiphysics Optimization, Synthesis, and Application of Jet Impingement Target Surfaces
,”
Proceedings of the 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
ITHERM '10,
Las Vegas, NV, June 2–5, pp.
1
7
.10.1109/ITHERM.2010.5501408
32.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.10.1002/nme.1620240207
33.
Reddy
,
J. N.
, and
Gartling
,
D. K.
,
2000
,
The Finite Element Method in Heat Transfer and Fluid Dynamics
,
2nd ed.
,
CRC Press
,
Boca Raton, FL
.
34.
Dede
,
E. M.
,
2010
, “
The Influence of Channel Aspect Ratio on the Performance of Optimized Thermal-Fluid Structures
,”
Proceedings of the COMSOL Conference 2010, Boston, MA, Oct. 7–9
.
35.
Comsol AB
,
2008
,
comsol multiphysics version 3.5a, Stockholm
.
36.
Incropera
,
F. P.
,
1999
,
Liquid Cooling of Electronics Devices by Single-Phase Convection
,
John Wiley & Sons
,
New York
.
37.
Altair Technologies, Inc.
,
2011
, available at http://www.altairusa.com/
38.
Dede
,
E. M.
,
Lee
,
J.
,
Liu
,
Y.
,
Robert
,
B.
, and
Yönak
,
S.
,
2012
, “
Computational Methods for the Optimization and Design of Electromechanical Vehicle Systems
,”
Int. J. Veh. Des.
,
58
(
2/3/4
), pp.
159
180
.10.1504/IJVD.2012.047383
You do not currently have access to this content.