The ionic liquid butylmethylimidazolium hexafluorophosphate (bmim)(PF6) and five different hydrofluorocarbon refrigerants were investigated as the working fluid pairs for a waste-heat driven absorption heat pump system for possible applications in electronics thermal management. A significant amount of the energy consumed in large electronic systems is used for cooling, resulting in low grade waste heat, which can be used to drive an absorption refrigeration system if a suitable working fluids can be identified. The Redlich–Kwong-type equation of state was used to model the thermodynamic conditions and the binary mixture properties at the corresponding states. The effects of desorber and absorber temperatures, waste-heat quality, and system design on the heat pump performance were investigated. Supporting experiments using R134a/(bmim)(PF6) as the working fluid pair were performed. Desorber and absorber outlet temperatures were varied by adjusting the desorber supply power and the coolant temperature at the evaporator inlet, respectively. For an evaporator temperature of 41 °C, which is relevant to electronics cooling applications, the maximum cooling-to-total-energy input was 0.35 with the evaporator cooling capability of 36 W and the desorber outlet temperature in the range of 50 to 110 °C.

References

References
1.
Brown
,
R.
,
Nordman
,
B.
,
Tschudi
,
B.
,
Shehabi
,
A.
,
Stanley
,
J.
,
Koomey
,
J.
,
Sartor
,
D.
,
Chan
,
P.
,
Loper
,
J.
,
Capana
,
S.
,
Hedman
,
B.
,
Duff
,
R.
,
Haines
,
E.
,
Sass
,
D.
,
and Fanara
,
A.
,
2008
, “
Report to Congress on Server and Data Center Energy Efficiency—Public Law 109-431
,”
Lawrence Berkeley National Laboratory
,
Berkeley, CA
.
2.
Pakbaznia
,
E.
, and
Pedram
,
M.
,
2009
, “
Minimizing Data Center Cooling and Server Power Costs
,”
ISLPED ’09: Proceedings of the 14th ACM/IEEE International Symposium on Low Power Electronics and Design, San Fransisco, CA, Aug. 19–21.
3.
Pal
,
A.
,
Joshi
,
Y. K.
,
Beitelmal
,
M. H.
, and
Patel
,
C. D.
,
2002
, “
Design and Performance Evaluation of a Compact Thermosyphon
,”
IEEE Trans. Comp. Pack. Tech.
,
25
(
4
), pp.
601
607
.10.1109/TCAPT.2002.807997
4.
Maydanik
,
Y. F.
,
Vershinin
,
S. V.
,
Korukov
,
M. A.
, and
Ochterbeck
,
J. M.
,
2005
, “
Miniature Loop Heat Pipes—A Promising Means for Electronics Cooling
,”
IEEE Trans. Comp. Pack. Tech.
,
28
(
2
), pp.
290
296
.10.1109/TCAPT.2005.848487
5.
Jiang
,
L.
,
Mikkelsen
,
J.
,
Koo
,
J. M.
,
Huber
,
D.
,
Yao
,
S.
,
Zhang
,
L.
,
Zhou
,
P.
,
Maveety
,
J. G.
,
Prasher
,
R.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
,
2002
, “
Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits
,”
IEEE Trans. Comp. Pack. Tech.
,
25
(
3
), pp.
347
355
.10.1109/TCAPT.2002.800599
6.
Wei
,
Y.
, and
Joshi
,
Y. K.
,
2004
, “
Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components
,”
ASME J. Electron. Packaging
,
126
, pp.
60
66
.10.1115/1.1647124
7.
Bintoro
,
J. S.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2005
, “
A Closed-Loop Electronics Cooling by Implementing Single Phase Impinging Jet and Mini Channels Heat Exchanger
,”
Appl. Therm. Eng.
,
25
, pp.
2740
2753
.10.1016/j.applthermaleng.2005.01.018
8.
Fan
,
X.
,
Zeng
,
G.
,
LaBounty
,
C.
,
Bowers
,
J. E.
,
Croke
,
E.
,
Ahn
,
C. C.
,
Huxtable
,
S.
,
Majumdar
,
A.
, and
Shakouri
,
A.
,
2001
, “
SiGeC/Si Superlattice Microcoolers
,”
App. Phys. Lett.
,
78
(
11
), pp.
1580
1582
.10.1063/1.1356455
9.
Mongia
,
R.
,
Masahiro
,
K.
,
DiStefano
,
E.
,
Barry
,
J.
,
Chen
,
W.
,
Izenson
,
M.
,
Possamai
,
F.
,
Zimmermann
,
A.
, and
Mochizuki
,
M.
,
2006
, “
Small Scale Refrigeration System for Electronics Cooling Within a Notebook Computer
,”
Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems (I-THERM), San Diego, CA, May 30-June 2
, pp.
751
758
.
10.
Drost
,
M. K.
, and
Friedrich
,
M.
, 1997, “
Miniature Heat Pump for Portable and Distributed Space Conditioning Applications
,”
Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference (IECEC-97), Honolulu, HI, July 27-Aug. 1
.
11.
Kim
,
Y. J.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2008
, “
An Absorption Based Miniature Heat Pump System for Electronics Cooling
,”
Int. J. Refrig
,
31
(
1
), pp.
23
33
.10.1016/j.ijrefrig.2007.07.003
12.
Suman
,
S.
Joshi
,
Y.
, and
Fedorov
,
A.
, 2004, “
Cryogenic/Sub-Ambient Cooling of Electronics: Revisited
,”
Proceedings of the Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM '04), Las Vegas, NV, June 1–4
.
13.
Srikhirin
,
P.
,
Aphornratana
,
S.
, and
Chungpaibulpatana
,
S.
,
2001
, “
A Review of Absorption Refrigeration Technologies
,”
Renew. Sustain. Energ. Rev.
,
5
(
4
), pp.
343
372
.10.1016/S1364-0321(01)00003-X
14.
Abdelmessih
,
A. N.
,
Abbas
,
M.
,
Al-Hashem
,
A.
, and
Munson
,
J.
,
2007
, “
Ethylene Glycol/Water as Working Fluids for an Experimental Absorption Cycle
,”
Exp. Heat Transfer
,
20
(
2
), pp.
87
102
.10.1080/08916150601091373
15.
Shiflett
,
M. B.
, and
Yokozeki
,
A.
,
2006
, “
Absorption Cycle Utilizing Ionic Liquid as Working Fluid
,” U.S. Patent 0197053, pp.
1
47
.
16.
Yokozeki
,
A.
,
2005
, “
Theoretical Performances of Various Refrigerant-Absorbent Pairs in a Vapor-Absorption Refrigeration Cycle by the Use of Equations of State
,”
Appl Energ
,
80
(
4
), pp.
383
399
.10.1016/j.apenergy.2004.04.011
17.
Shiflett
,
M.
, and
Yokozeki
,
A.
,
2007
, “
Utilizing Ionic Liquids for Hydrofluorocarbon Separation
,” U.S. Patent 0131535, pp.
1
42
.
18.
Kim
,
Y. J.
,
Kim
,
S.
,
Joshi
,
Y. K.
,
Fedorov
,
A. G.
, and
Kohl
,
P. A.
, “
Thermodynamic Analysis of an Absorption Refrigeration System With Ionic-Liquid/Refrigerant Mixture as a Working Fluid
,” Energy (in press).
19.
Smith
,
J. M.
Van Ness
,
H. C.
, and
Abbott
,
M. M.
,
2005
,
Introduction to Chemical Engineering Thermodynamics
,
McGraw-Hill
,
Boston
.
20.
Shiflett
,
M. B.
, and
Yokozeki
,
A.
,
2010
, “
Water Solubility in Ionic Liquids and Application to Absorption Cycles
,”
Ind. Eng. Chem. Res.
,
49
(
19
), pp.
9496
9503
.10.1021/ie901254f
21.
Shiflett
,
M. B.
, and
Yokozeki
,
A.
,
2006
, “
Solubility and Diffusivity of Hydrofluorocarbons in Room-Temperature Ionic Liquids
,”
AIChE J.
,
52
(
3
), pp.
1205
1219
.10.1002/aic.10685
22.
Yokozeki
,
A.
, and
Shiflett
,
M. B.
,
2006
, “
Global Phase Behaviors of Trifluoromethane in Ionic Liquid (bmim)(PF6)
,”
AIChE J.
,
52
(
11
), pp.
3952
3957
.10.1002/aic.11007
You do not currently have access to this content.