Goldmann constants and Norris–Landzberg acceleration factors for SAC305 lead-free solders have been developed based on principal component regression models (PCR) for reliability prediction and part selection of area-array packaging architectures under thermo-mechanical loads. Models have been developed in conjunction with stepwise regression methods for identification of the main effects. Package architectures studied include ball-grid array (BGA) packages mounted on copper-core and no-core printed circuit assemblies in harsh environments. The models have been developed based on thermomechanical reliability data acquired on copper-core and no-core assemblies in four different thermal cycling conditions. Packages with Sn3Ag0.5Cu solder alloy interconnects have been examined. The models have been developed based on perturbation of accelerated test thermomechanical failure data. Data have been gathered on nine different thermal cycle conditions with SAC305 alloys. The thermal cycle conditions differ in temperature range, dwell times, maximum temperature, and minimum temperature to enable development of constants needed for the life prediction and assessment of acceleration factors. Goldmann constants and the Norris–Landzberg acceleration factors have been benchmarked against previously published values. In addition, model predictions have been validated against validation datasets which have not been used for model development. Convergence of statistical models with experimental data has been demonstrated using a single factor design of experimental study for individual factors including temperature cycle magnitude, relative coefficient of thermal expansion, and diagonal length of the chip. The predicted and measured acceleration factors have also been computed and correlated. Good correlations have been achieved for parameters examined. Previously, the feasibility of using multiple linear regression models for reliability prediction has been demonstrated for flex-substrate BGA packages (Lall et al., 2004, “Thermal Reliability Considerations for Deployment of Area Array Packages in Harsh Environments,” Proceedings of the ITherm 2004, 9th Intersociety Conference on Thermal and Thermo-mechanical Phenomena, Las Vegas, Nevada, Jun. 1–4, pp. 259–267, Lall et al., 2005, “Thermal Reliability Considerations for Deployment of Area Array Packages in Harsh Environments,” IEEE Trans. Compon. Packag. Technol., 28(3), pp. 457–466., flip-chip packages (Lall et al., 2005, “Decision-Support Models for Thermo-Mechanical Reliability of Leadfree Flip-Chip Electronics in Extreme Environments,” Proceedings of the 55th IEEE Electronic Components and Technology Conference, Orlando, FL, Jun. 1–3, pp. 127–136) and ceramic BGA packages (Lall et al., 2007, “Thermo-Mechanical Reliability Based Part Selection Models for Addressing Part Obsolescence in CBGA, CCGA, FLEXBGA, and Flip-Chip Packages,” ASME InterPACK Conference, Vancouver, British Columbia, Canada, Jul. 8–12, Paper No. IPACK2007-33832, pp. 1–18). The presented methodology is valuable in the development of fatigue damage constants for the application specific accelerated test datasets and provides a method to develop institutional learning based on prior accelerated test data.

References

References
1.
Lall
,
P.
,
Singh
,
N.
,
Suhling
,
J.
,
Strickland
,
M.
, and
Blanche
,
J.
,
2004
, “
Thermal Reliability Considerations for Deployment of Area Array Packages in Harsh Environments
,”
Proceedings of the ITherm 2004, 9th Intersociety Conference on Thermal and Thermo-Mechanical Phenomena
,
Las Vegas, Nevada
,
Jun. 1–4
, pp.
259
267
.
2.
Lall
,
P.
,
Singh
,
N.
,
Suhling
,
J.
,
Strickland
,
M.
, and
Blanche
,
J.
,
2005
, “
Thermal Reliability Considerations for Deployment of Area Array Packages in Harsh Environments
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
3
), pp.
457
466
.10.1109/TCAPT.2005.854162
3.
Lall
,
P.
,
Singh
,
N.
,
Strickland
,
M.
,
Blanche
,
J.
, and
Suhling
,
J.
,
2005
, “
Decision-Support Models for Thermo-Mechanical Reliability of Leadfree Flip-Chip Electronics in Extreme Environments
,”
Proceedings of the 55th IEEE Electronic Components and Technology Conference
,
Orlando, FL
,
Jun. 1–3
, pp.
127
136
.
4.
Lall
,
P.
,
Hariharan
,
G.
,
Shirgaokar
,
A.
,
Suhling
,
J.
,
Strickland
,
M.
, and
Blanche
,
J.
,
2007
, “
Thermo-Mechanical Reliability Based Part Selection Models for Addressing Part Obsolescence in CBGA, CCGA, FLEXBGA, and Flip-Chip Packages
,”
ASME InterPACK Conference
,
Vancouver, British Columbia, Canada
,
Jul. 8–12
,
Paper No. IPACK2007-33832
, pp.
1
18
.
5.
Manson
,
S. S.
,
1966
,
Thermal Stress and Low-Cycle Fatigue
,
McGraw-Hill Book Company
,
New York
.
6.
Coffin
,
L. F.
, Jr.
,
1954
, “
A Study of the Effects Cyclic Thermal Stresses on a Ductile Metal
,”
Trans. ASME
,
76
, pp.
931
950
.
7.
Coffin
,
L. F.
,
Jr.
,
1963
, “
Low-Cycle Fatigue
,”
Met. Eng. Q.
,
3
, pp.
15
24
.
8.
Goldmann
,
L. S.
,
1969
, “
Geometric Optimization of Controlled Collapse Interconnections
,”
IBM J. Res. Dev.
,
13
, pp.
251
265
.10.1147/rd.133.0251
9.
Norris
,
K. C.
, and
Landzberg
,
A. H.
,
1969
, “
Reliability of Controlled Collapse Interconnections
,”
IBM J. Res. Dev.
,
13
, pp.
266
271
.10.1147/rd.133.0266
10.
Darveaux
,
R.
,
Banerji
,
K.
,
Mawer
,
A.
, and
Dody
,
G.
,
1995
, “
Reliability of Plastic Ball Grid Array Assembly
,”
Ball Grid Array Technology
,
J.
Lau
, ed.,
McGraw-Hill, Inc.
,
New York
, pp.
379
442
.
11.
Darveaux
,
R.
,
1996
, “
How to Use Finite Element Analysis to Predict Solder Joint Fatigue Life
,”
Proceedings of the 8th International Congress on Experimental Mechanics
,
Nashville, TN
,
Jun. 10–13
, pp.
41
42
.
12.
Darveaux
,
R.
,
2000
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation
,”
Proceedings of 50th ECTC
, pp.
1048
1058
.
13.
Engelmaier
,
W.
, and
Attarwala
,
A. I.
,
1989
, “
Surface-Mount Attachment Reliability of Clip-Leaded Ceramic Chip Carriers on FR-4 Circuit Boards
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
12
(
2
), pp.
284
296
.
14.
Engelmaier
,
W.
,
1990
, “
The Use Environments of Electronic Assemblies and Their Impact on Surface Mount Solder Attachment Reliability
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
(
4
), pp.
903
908
.10.1109/33.62538
15.
Engelmaier
,
W.
,
1993
, “
Generic Reliability Figures of Merit Design Tools for Surface Mount Solder Attachments
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
16
(
1
), pp.
103
112
.10.1109/33.214866
16.
Knecht
,
S.
, and
Fox
,
L.
,
1991
, “
Integrated Matrix Creep: Application to Accelerated Testing and Lifetime Prediction
,”
Solder Joint Reliability Theory and Applications
,
J. H.
Lau
, ed.,
Van Nostrand Reinhold, New York
,
Chap. 16
.
17.
Vandevelde
,
B.
,
Christiaens
,
F.
,
Beyne
,
E.
,
Roggen
,
J.
,
Peeters
,
J.
,
Allaert
,
K.
,
Vandepitte
,
D.
, and
Bergmans
,
J.
,
1998
, “
Thermomechanical Models for Leadless Solder Interconnections in Flip-Chip Assemblies
,”
IEEE Trans. Compon., Packag., Manuf. Technol. A
,
21
(
1
), pp.
177
185
.10.1109/95.679047
18.
Clech
,
J. P.
,
1996
, “
Solder Reliability Solutions: A PC Based Design-for-Reliability Tool
,”
Surface Mount International
,
San Jose, CA
, pp.
136
151
.
19.
Syed
,
A.
,
2001
, “
Predicting Solder Joint Reliability for Thermal, Power, and Bend Cycle Within 25% Accuracy
,”
Proceedings of the 51st Electronic Components and Technology Conference
, pp.
255
263
.
20.
Dasgupta
,
A.
,
Oyan
,
C.
,
Pecht
,
M.
, and
Barker
,
D.
,
1992
, “
Solder Creep-Fatigue Analysis by an Energy-Partitioning Approach
,”
J. Mater. Res.
,
7
(
8
), pp.
2194
2204
.10.1557/JMR.1992.2194
21.
Burnette
,
T.
,
Johnson
,
Z.
,
Koschmieder
,
T.
, and
Oyler
,
W.
,
2000
, “
Underfilled BGAs for Ceramic BGA Packages and Board-Level Reliability
,”
Proceedings of the 50th Electronic and Components Technology Conference
,
Las Vegas, NV
,
May 23–26
, pp.
1221
1226
.
22.
Cheng
,
Z.
,
2005
, “
Lifetime of Solder Joint and Delamination in Flip Chip Assemblies
,”
Proceedings of 2004 International Conference on the Business of Electronic Product Reliability and Liability
,
Shangai, China
,
April 27–30
, pp.
174
186
.
23.
Teo
,
P. S.
,
Huang
,
Y. W.
,
Tung
,
C. H.
,
Marks
,
M. R.
, and
Lim
,
T. B.
,
2000
, “
Investigation of Under Bump Metallization Systems for Flip-Chip Assemblies
,”
Proceedings of the 50th Electronic Components and Technology Conference
,
Las Vegas, Nevada
,
May 21–24
, pp.
33
39
.
24.
Zhang
,
C.
,
Lin
,
J. K.
, and
Li
,
L.
,
2001
, “
Thermal Fatigue Properties of Lead-free Solders on Cu and NiP
,”
Proceedings of 51st Electronic Components and Technology Conference, IEEE
,
Orlando, FL
,
May 29–June 1
, pp.
464
470
.
25.
Lau
,
J.
,
2000
,
Low Cost Flip Chip Technologies
,
McGraw-Hill
,
NY
.
26.
Master
,
R. N.
,
Cole
,
M. S.
, and
Martin
,
G. B.
,
1995
, “
Ceramic Column Grid Array for Flip Chip Application
,”
Proceedings of the Electronic and Components Technology Conference
, pp.
925
929
.
27.
Master
,
R. N.
, and
Dolbear
,
T. P.
,
1998
, “
Ceramic Ball Grid Array for AMD K6 Microprocessor Application
,”
Proceedings of the 48th Electronic and Components Technology Conference
,
Seattle, WA
,
May 25–28
, pp.
702
706
.
28.
Peng
,
C. T.
,
Liu
,
C. M.
,
Lin
,
J. C.
, and
Cheng
,
H. C.
,
2004
, “
Reliability Analysis and Design for the Fine-Pitch Flip Chip BGA Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
4
), pp.
684
693
.10.1109/TCAPT.2004.838867
29.
Cook
,
E. R.
, and
Jacoby
,
G. C.
,
Jr.
,
1977
, “
Tree-Ring-Drought Relationships in the Hudson Valley, New York
,”
Science
,
198
, pp.
399
401
.10.1126/science.198.4315.399
30.
Fritts
,
H. C.
,
Blasing
,
T. J.
,
Hayden
,
B. P.
, and
Kutzbach
,
J. E.
,
1971
, “
Multivariate Techniques for Specifying Tree-Growth and Climate Relationships and for Reconstructing Anomalies in Paleoclimate
,”
J. Appl. Meteorol.
,
10
, pp.
845
864
.10.1175/1520-0450(1971)010<0845:MTFSTG>2.0.CO;2
31.
Massey
,
W. F.
,
1965
, “
Principal Component Regression in Exploratory Statistical Research
,”
J. Am. Stat. Assoc.
,
60
(309)
, pp.
234
256
.
32.
Draper
,
N. R.
, and
Smith
,
H.
,
1981
,
Applied Regression Analysis
,
2nd ed.
,
John Wiley and Sons
,
New York
, p.
709
.
33.
Loehlin
,
J. C.
,
1992
,
Latent Variable Models: An Introduction to Factor, Path, and Structural Analysis
,
Lawrence Erlbaum Associates
,
Hillsdale, NJ
, p.
292
.
34.
Mansfield
,
E. R.
,
Webster
,
J. T.
, and
Gunst
,
R. F.
,
1977
, “
An Analytic Variable Selection Technique for Principal Components Regression
,”
Appl. Stat.
,
6
, pp.
34
40
.10.2307/2346865
35.
Gunst
,
R. F.
, and
Mason
,
R. L.
,
1980
,
Regression Analysis and Its Application: A Data-Oriented Approach
,
Marcel Dekker
,
New York
,
402
p.
36.
Lau
,
J. H.
, and
Pao
,
Y. H.
,
1997
,
Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies
,
McGraw-Hill Book Company
,
New York
, pp.
38
39
.
37.
Pan
,
N.
,
Henshall
,
A.
,
Billaut
,
F.
,
Dai
,
S.
,
Strum
,
M. J.
,
Lewis
,
R.
,
Benedetto
,
E.
, and
Rayner
,
J.
,
2005
, “
An Acceleration Model for Sn-Ag-Cu Solder Joint Reliability Under Various Thermal Cycle Conditions
,”
SMTA International
, pp.
867
883
.
38.
Vasudevan
,
V.
, and
Fan
,
X.
,
2008
, “
An Acceleration Model for Lead-Free (SAC) Solder Joint Reliability Under Thermal Cycling
,”
2008 ECTC
, pp.
139
145
.
39.
Hillman
,
C.
,
2006
, “
Assessment of Pb-Free Norris-Landzberg Model to JG-PP Test Data
,” DfR Solutions, College Park, MD, https://tdksc.ksc.nasa.gov/servlet/dm.web.Fetch/TEERMJG-PPandNLModelAnalysisAssessmentPBFree.pdf?gid=103677
40.
Salmela
,
O.
,
2006
, “
Acceleration Factors for Lead-Free Solder Materials
,”
Proceedings of the SMTAI Conference, Rosemont
,
IL, Sept 24–28
, pp.
931
938
.
41.
Miremadi
,
J.
,
Henshall
,
G.
,
Allen
,
A.
,
Benedetto
,
E.
, and
Roesch
,
M.
,
2009
, “
Lead-Free Solder-Joint-Reliability Model Enhancement
,”
IMAPS 2009 42nd International Symposium on Microelectronics, San Jose Convention Center
,
San Jose, California
,
Nov. 1–5
.
You do not currently have access to this content.