Microprocessor packaging in modern workstations and servers often consists of one or more large flip chip die that are mounted to a high performance ceramic chip carrier. The final assembly configuration features a complex stack up of flip chip area array solder interconnects, underfill, ceramic substrate, lid, heat sink, thermal interface materials (TIMs), second level ceramic ball grid array (CBGA) solder joints, organic printed circuit board, etc., so that a very complicated set of loads is transmitted to the microprocessor chip. Several trends in the evolution of this packaging architecture have exacerbated die stress levels including the transition to larger die, high coefficient of thermal expansion (CTE) ceramic substrates, lead free solder joints, higher levels of power generation, and larger heat sinks with increased clamping forces. Die stress effects are of concern due to several reasons including degradation of silicon device performance (mobility/speed), damage that can occur to the copper/low-k top level interconnect layers, and potential mechanical failure of the silicon in extreme cases. In this work, test chips containing piezoresistive stress sensors have been used to measure the buildup of mechanical stresses in a microprocessor die after various steps of the flip chip CBGA assembly process. The utilized (111) silicon test chips were able to measure the complete three-dimensional stress state at each sensor site being monitored by the data acquisition hardware. Special test fixtures were developed to eliminate any additional stresses due to clamping effects. The developed normal stresses are compressive (triaxial compression) across the die surface, with significant in-plane and out-of-plane (interfacial) shear stresses also present at the die corners. The compressive stresses increase with each assembly step (flip chip solder joint reflow, underfill dispense and cure, and lid attachment). The experimental observations from this study show clearly that large area array flip chips are subjected to relatively large compressive in-plane normal stresses after solder reflow. We also observed that the majority of the die compressive stress is accumulated during the underfilling assembly step. Typical increases in the stress magnitude were on the order of 300% (relative to the stresses due to solder joint reflow only). As a general “rule of thumb,” approximately two-thirds (∼66%) of the final die stress magnitudes were observed to be developed during the underfill dispense and cure, with the second largest contribution coming from the die attachment, and the smallest contribution coming from lid attachment. The experimental test chip stress measurements were correlated with finite element simulations of the packaging process. A sequential modeling approach has been utilized to predict the build-up of compressive stress. The utilized method incorporates precise thermal histories of the packaging process, element creation, and nonlinear temperature and time dependent material properties. With suitable detail in the models, excellent correlation has been obtained with the sensor data throughout all packaging processes. Finally, CBGAs with the stress sensing chips were soldered to organic printed circuit board (PCB) test boards. A simulated heat sink loading applied, and the stresses were measured as a function of the clamping force. Compressive stress changes of up to − 60 MPa were observed for a 1000 N applied clamping force. The experimental test chip stress measurements were correlated with finite element simulations of the clamping process. With suitable detail in the models, excellent correlation has been obtained for the stress changes occurring during simulated heat sink clamping.

References

References
1.
Maeda
,
K.
,
Higashi
,
M.
,
Kokubu
,
M.
, and
Nakagawa
,
S.
,
2000
, “
The Application of HITCE Ceramic Material for LGA-Type Chip Scale Package
,”
Proceedings of the 50th Electronic Components and Technology Conference
, pp.
358
363
.
2.
Pendse
,
R.
,
Afshari
,
B.
,
Butel
,
N.
,
Leibovitz
,
J.
,
Hosoi
,
Y.
,
Shimada
,
M.
,
Maeda
,
K.
,
Maeda
,
M.
, and
Yonekura
,
H.
,
2000
, “
New CBGA Package With Improved 2nd Level Reliability
,”
Proceedings of the 50th Electronic Components and Technology Conference
, pp.
1189
1197
.
3.
Dai
,
X.
,
Pan
,
N.
,
Castro
,
A.
,
Culler
,
J.
,
Hussain
,
M.
,
Lewis
,
R.
, and
Michalka
,
T.
,
2005
, “
High I/O Glass Ceramic Package Pb-Free BGA Interconnect Reliability
,”
Proceedings of the 55th Electronic Components and Technology Conference
, pp.
23
29
.
4.
Pan
,
N.
,
Henshall
,
G. A.
,
Billaut
,
F.
,
Dai
,
S.
,
Strum
,
M. J.
,
Benedetto
,
E.
, and
Rayner
,
J.
,
2005
, “
An Acceleration Model for Sn-Ag-Cu Solder Joint Reliability Under Various Thermal Cycle Conditions
,”
Proceedings of the 2005 SMTA International Conference
, pp.
876
883
.
5.
Teng
,
S. Y.
, and
Brillhart
,
M.
,
2002
, “
Reliability Assessment of a High CTE CBGA for High Availability Systems
,”
Proceedings of the 52nd Electronic Components and Technology Conference
, pp.
611
616
.
6.
Tosaya
,
E.
,
Ouimet
,
S.
,
Martel
,
R.
, and
Lord
,
R.
,
2004
, “
Router Flip Chip Packaging Solution and Reliability
,”
Proceedings of the 54th Electronic Components and Technology Conference
, pp.
1153
1160
.
7.
Butel
,
N.
,
2007
, “
Comparison of the Level 2 Characteristics of HITEC Substrate Assembled With SAC and High Lead Balls
,”
Proceedings of the 2007 SMTA International Conference
, pp.
1
10
.
8.
Xu
,
G.
,
Guenin
,
B.
, and
Vogel
,
M.
,
2004
, “
Extension of Air Cooling for High Power Processors
,”
Proceedings of ITherm 2004
, pp.
186
193
.
9.
Zhu
,
L.
,
Summers
,
M.
,
Uppalapati
,
R.
, and
Clyne
,
K.
,
2006
, “
Thermal Fatigue Reliability Modeling and Analysis of BGA Socket Assembly in System Board With Preloaded Use Condition
,”
Proceedings of the 56th Electronic Components and Technology Conference
.
10.
Lopez
,
L. D.
,
Nathan
,
S.
, and
Santos
,
S.
,
2004
, “
Preparation of Loading Information for Reliability Simulation
,”
IEEE Trans. Compon. Packag. Technol.
,
27
, pp.
732
735
.10.1109/TCAPT.2004.840092
11.
Chen
,
C.-I.
,
Ni
,
C.-Y.
,
Lee
,
C.-C.
,
Pan
,
H.-Y.
, and
Yuan
,
T.-D.
,
2007
, “
Mechanical Characterization and Performance Optimization for GPU Fan-Sink Cooling Module Assembly
,”
IEEE Trans. Electron. Packag. Manuf.
,
30
, pp.
173
181
.10.1109/TEPM.2007.899147
12.
Quinones
,
H.
, and
Babiarz
,
A.
,
2000
, “
Chip Scale Packaging Reliability
,”
Proceedings of the International Symposium on Electronic Materials and Packaging (EMAP)
, pp.
398
405
.
13.
Achour
,
M. F. B.
, and
Bar-Cohen
,
A.
,
1999
, “
Mechanical Stress Reduction in Heat Sink Bond Layers—A Numerical Feasibility Study
,”
Proceedings of the 49th Electronic Components and Technology Conference
, pp.
307
315
.
14.
Peterson
,
D. W.
,
Burchett
,
S. N.
,
Sweet
,
J. N.
, and
Mitchell
,
R. T.
,
1999
, “
Calculation and Validation of Thermomechanical Stresses in Flip Chip BGA Using the ATC4.2 Test Vehicle
,”
Proceedings of the 49th Electronic Components and Technology Conference
,
San Diego, CA
,
June
1–4
, pp.
1241
1248
.
15.
Palaniappan
,
P.
,
Selman
,
P.
,
Baldwin
,
D.
,
Wu
,
J.
, and
Wong
,
C. P.
,
1999
, “
Correlation of Flip Chip Underfill Process Parameters and Material Properties With In-Process Stress Generation
,”
IEEE Trans. Electron. Packag. Manuf.
,
22
(
1
), pp.
53
62
.10.1109/6104.755089
16.
Palaniappan
,
P.
, and
Baldwin
,
D. F.
,
2000
, “
In Process Stress Analysis of Flip Chip Assemblies During Underfill Cure
,”
Microelectron. Reliab.
,
40
(
7
), pp.
1181
1190
.10.1016/S0026-2714(00)00045-7
17.
Suhling
,
J. C.
,
Johnson
,
R.
,
Mian
,
A. K. M.
,
Rahim
,
M.
,
Zou.
,
Y.
,
Ellis
,
C.
,
Ragam
,
S.
,
Palmer
,
M.
, and
Jaeger
,
R.
,
1999
, “
Measurement of Backside Flip Chip Die Stresses Using Piezoresistive Test Die
,”
32nd International Symposium on Microelectronics
,
IMAPS
,
Chicago
,
Oct.
26–28
, pp.
298
303
.
18.
Rahim
,
M. K.
,
Suhling
,
J. C.
,
Copeland
,
D. S.
,
Islam
,
M. S.
,
Jaeger
,
R. C.
,
Lall
,
P.
,
Johnson
,
R. W.
,
2004
, “
Measurement of Thermally Induced Die Stresses in Flip Chip on Laminate Assemblies
,”
Proceedings of ITHERM 2004
,
Las Vegas, NV
,
June
1–4
, pp.
1
12
.
19.
Rahim
,
M. K.
,
Suhling
,
J. C.
,
Copeland
,
D. S.
,
Islam
,
M. S.
,
Jaeger
,
R. C.
,
Lall
,
P.
, and
Johnson
,
R. W.
,
2005
, “
Die Stress Characterization in Flip-Chip Assemblies
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
3
), pp.
415
429
.10.1109/TCAPT.2005.854303
20.
Rahim
,
M. K.
,
Suhling
,
J. C.
,
Jaeger
,
R. C.
, and
Lall
,
P.
,
2005
, “
Fundamentals of Delamination Initiation and Growth in Flip Chip Assemblies
,”
Proceedings of the 55th IEEE Electronic Components and Technology Conference
,
Orlando, FL
,
June
1–3
, pp.
1172
1186
.
21.
Rahim
,
M. K.
,
Roberts
,
J. A.
,
Suhling
,
J. C.
,
Jaeger
,
R. C.
, and
Lall
,
P.
,
2007
, “
Continuous In-Situ Die Stress Measurements During Thermal Cycling Accelerated Life Testing
,”
Proceedings of the 57th IEEE Electronic Components and Technology Conference
,
Reno, NV
,
May
29
June
1
, pp.
1478
1489
.
22.
Lall
,
P.
,
Islam
,
N.
,
Rahim
,
K.
,
Suhling
,
J.
, and
Gale
,
S.
,
2004
, “
Leading Indicators-of-Failure for Prognosis of Electronic and MEMS Packaging
,”
Proceedings of the 54th Electronic Components and Technology Conference
,
Las Vegas, NV
,
June
1–4
, pp.
1570
1578
.
23.
Lall
,
P.
,
Islam
,
M. N.
,
Rahim
,
K.
, and
Suhling
,
J. C.
,
2006
, “
Prognostics and Health Management of Electronic Packaging
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
3
), pp.
666
677
.10.1109/TCAPT.2005.850520
24.
Bittle
,
D. A.
,
Suhling
,
J. C.
,
Beaty
,
R. E.
,
Jaeger
,
R. C.
, and
Johnson
,
R. W.
,
1991
, “
Piezoresistive Stress Sensors for Structural Analysis of Electronic Packages
,”
J. Electron. Packag.
,
113
(
3
), pp.
203
215
.10.1115/1.2905397
25.
Sweet
,
J. N.
,
1993
, “
Die Stress Measurement Using Piezoresistive Stress Sensors
,”
Thermal Stress and Strain in Microelectronics Packaging
,
J.
Lau
, ed.,
Von Nostrand Reinhold
, New York.
26.
Suhling
,
J. C.
, and
Jaeger
,
R. C.
,
2001
, “
Silicon Piezoresistive Stress Sensors and Their Application in Electronic Packaging
,”
IEEE Sens. J.
,
1
(
1
), pp.
14
30
.10.1109/JSEN.2001.923584
27.
Zou
,
Y.
,
Suhling
,
J. C.
,
Johnson
,
R. W.
,
Jaeger
,
R. C.
, and
Mian
,
A. K. M.
,
1999
, “
In-Situ Stress State Measurements During Chip-on-Board Assembly
,”
IEEE Trans. Electron. Packag. Manuf.
,
22
(
1
), pp.
38
52
.10.1109/6104.755088
28.
Zou
,
Y.
,
Lin
,
S. T.
,
Suhling
,
J. C.
, and
Jaeger
,
R. C.
,
Lin
,
S. T.
,
Benoit
,
J. T.
,
Grzybowski
,
R. R.
,
1999
, “
Die Surface Stress Variation During Thermal Cycling and Thermal Aging Reliability Tests
,”
Proceedings of the 49th Electronic Components and Technology Conference
,
San Diego, CA
,
June
1–4
, pp.
1249
1260
.
29.
Zou
,
Y.
,
Suhling
,
J. C.
,
Jaeger
,
R. C.
, and
Ali
,
H.
,
1998
, “
Three-Dimensional Die Surface Stress Measurements in Delaminated and Non-Delaminated Plastic Packaging
,”
Proceedings of the 48th Electronic Components and Technology Conference
,
Seattle, WA
,
May
25–28
, pp.
1223
1234
.
30.
Chen
,
Y.
,
Jaeger
,
R. C.
, and
Suhling
,
J. C.
,
2006
, “
Multiplexed CMOS Sensor Arrays for Die Stress Mapping
,”
Proceedings of the 2006 European Solid-State Circuits Conference (ESSCIRC 2006)
,
Montreux, Switzerland
,
Sept.
19–21
, pp.
424
427
.
31.
Jaeger
,
R. C.
,
Ramani
,
R.
,
Suhling
,
J. C.
, and
Kang
,
Y.
,
1995
, “
CMOS Stress Sensor Circuits Using Piezoresistive Field-Effect Transistors (PIFETs)
,”
Proceedings of the 1995 Symposium on VLSI Circuits
,
Kyoto, Japan
,
June
8–10
, pp.
43
44
.
32.
Jaeger
,
R. C.
,
Ramani
,
R.
, and
Suhling
,
J. C.
,
1995
, “
Effects of Stress-Induced Mismatches on CMOS Analog Circuits
,”
Proceedings of the International Symposium on VLSI Technology, Systems, and Applications
,
Taipei, Taiwan
,
May
31
June
2
, pp.
354
360
.
33.
Jaeger
,
R. C.
,
Suhling
,
J. C.
,
Ramani
,
R.
,
Bradley
,
A. T.
, and
Xu
,
J.
,
2000
, “
CMOS Stress Sensors on (100) Silicon
,”
IEEE J. Solid-State Circuits
,
35
(
1
), pp.
85
95
.10.1109/4.818923
34.
Bradley
,
A. T.
,
Jaeger
,
R. C.
,
Suhling
,
J. C.
, and
O’Connor
,
K. J.
,
2001
, “
Piezoresistive Characteristics of Short-Channel MOSFETS on (100) Silicon
,”
IEEE Trans. Electron Devices
,
48
(
9
), pp.
2009
2015
.10.1109/16.944190
35.
Mian
,
A. K. M.
,
Suhling
,
J. C.
, and
Jaeger
,
R. C.
,
2006
, “
The van der Pauw Stress Sensor
,”
IEEE Sens. J.
,
6
(
2
), pp.
340
356
.10.1109/JSEN.2006.870140
36.
Suhling
,
J. C.
,
Jaeger
,
R. C.
,
Lin
,
S. T.
,
Mian
,
A. K. M.
,
Cordes
,
R. A.
, and
Wilamowski
,
B. M.
,
1997
, “
Design and Calibration of Optimized (111) Silicon Stress Sensing Test Chips
,”
Proceedings of InterPACK ‘97
,
Kohala, HI
,
June
15–19
, pp.
1723
1729
.
37.
Jaeger
,
R. C.
,
Suhling
,
J. C.
, and
Ramani
,
R.
,
1993
, “
Thermally Induced Errors in the Application of Silicon Piezoresistive Stress Sensors
,”
Advances in Electronic Packaging 1993—Proceedings of the 1993 ASME International Electronic Packaging Conference
,
Binghamton, NY
,
Sept.
29
Oct.
2
, pp.
457
470
.
38.
Jaeger
,
R. C.
,
Suhling
,
J. C.
,
Carey
,
M. T.
, and
Johnson
,
R. W.
,
1993
, “
A Piezoresistive Sensor Chip for Measurement of Stress in Electronic Packaging
,”
Proceedings of 1993 IEEE Electronic Components and Technology Conference
,
Orlando, FL
,
June
2–4
, pp.
686
692
.
39.
Jaeger
,
R. C.
,
Suhling
,
J. C.
,
Carey
,
M. T.
, and
Johnson
,
R. W.
,
1993
, “
Off-Axis Piezoresistive Sensors for Measurement of Stress in Electronic Packaging
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
16
(
8
), pp.
925
931
.10.1109/33.273694
40.
Jaeger
,
R. C.
,
Suhling
,
J. C.
, and
Ramani
,
R.
,
1994
, “
Errors Associated With the Design, Calibration of Piezoresistive Stress Sensors in (100) Silicon
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part B
,
17
(
1
), pp.
97
107
.10.1109/96.296437
41.
Jaeger
,
R. C.
,
Suhling
,
J. C.
, and
Anderson
,
A. A.
,
1994
, “
A (100) Silicon Stress Test Chip With Optimized Piezoresistive Sensor Rosettes
,”
Proceedings of the 44th Electronic Components and Technology Conference
,
Washington, DC
,
May
1–4
, pp.
741
749
.
42.
Cordes
,
R. A.
,
Suhling
,
J. C.
,
Kang
,
Y.
, and
Jaeger
,
R. C.
,
1995
, “
Optimal Temperature Compensated Piezoresistive Stress Sensor Rosettes
,”
Proceedings of the Symposium on Applications of Experimental Mechanics to Electronic Packaging
,
ASME, EEP, ASME International Mechanical Engineering Congress and Exposition
,
San Francisco, CA
,
November
12–17
, Vol.
13
, pp.
109
116
.
43.
Jaeger
,
R. C.
,
Beaty
,
R. E.
,
Suhling
,
J. C.
,
Johnson
,
R. W.
, and
Butler
,
R. D.
,
1992
, “
Evaluation of Piezoresistive Coefficient Variation in Silicon Stress Sensors Using a Four Point Bending Test Fixture
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
15
(
5
), pp.
904
914
.10.1109/33.180057
44.
Suhling
,
J. C.
,
Cordes
,
R. A.
,
Kang
,
Y. L.
, and
Jaeger
,
R. C.
,
1994
, “
Wafer-Level Calibration of Stress Sensing Test Chips
,”
Proceedings of the 44th Electronic Components and Technology Conference
,
Washington, DC
,
May
1–4
, pp.
1058
1070
.
45.
Kang
,
Y.
,
Mian
,
A. K. M.
,
Suhling
,
J. C.
, and
Jaeger
,
R. C.
,
1997
, “
Hydrostatic Response of Piezoresistive Stress Sensors
,”
Application of Experimental Mechanics to Electronic Packaging—1997
,
ASME, EEP, ASME International Mechanical Engineering Congress and Exposition
,
Dallas, TX
,
Nov.
16–21
, Vol.
22
, pp.
29
36
.
46.
Ueta
,
N.
, and
Miura
,
H.
,
2007
, “
Dominant Structural Factors of Local Residual Stress in Three Dimensional Stacked LSI Chips Mounted Using Flip Chip Technology
,”
Proceedings of InterPACK ’07
, Paper No. IPACK2007-33402, pp.
1
7
.
You do not currently have access to this content.