Site-specific on-demand cooling of hot spots in microprocessors can reduce peak temperature and achieve a more uniform thermal profile on chip, thereby improve chip performance and increase the processor’s life time. An array of thermoelectric coolers (TECs) integrated inside an electronic package has the potential to provide such efficient cooling of hot spots on chip. This paper analyzes the potential of using multiple TECs for hot spot cooling to obtain favorable thermal profile on chip in an energy efficient way. Our computational analysis of an electronic package with multiple TECs shows a strong conductive coupling among active TECs during steady-state operation. Transient operation of TECs is capable of driving cold-side temperatures below steady-state values. Our analysis on TEC arrays using current pulses shows that the effect of TEC coupling on transient cooling is weak. Various pulse profiles have been studied to illustrate the effect of shape of current pulse on the operation of TECs considering crucial parameters such as total energy consumed in TECs peak temperature on the chip, temperature overshoot at the hot spot and settling time during pulsed cooling of hot spots. The square root pulse profile is found to be the most effective with maximum cooling and at half the energy expenditure in comparison to a constant current pulse. We analyze the operation of multiple TECs for cooling spatiotemporally varying hot spots. The analysis shows that the transient cooling using high amplitude current pulses is beneficial for short term infrequent hot spots, but high amplitude current pulse cannot be used for very frequent or long lasting hot spots.

References

References
1.
Watwe
,
A.
, and
Viswanath
,
R.
, 2003 “
Thermal Implications of Non-uniform Die Power Map and CPU Performance
,”
Proceedings of InterPACK’03
, Maui, HI, July 6–11.
2.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
,
R.
, and
Venkatasubramanian
,
R.
, 2009, “
On-chip Cooling by Superlattice-Based Thin-Film Thermoelectrics
,”
Nat. Nanotechnol.
,
4
, pp.
235
238
.
3.
Mahajan
,
R.
,
Chiu
,
C. P.
, and
Chrysler
,
G.
, 2006, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
, pp.
1476
1486
.
4.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O’Quinn
,
B.
, 2001, “
Thin-Film Thermoelectric Devices With High Room-Temperature Figures of Merit
,”
Nature
,
413
, pp.
597
602
.
5.
Harman
,
T. C.
,
Taylor
,
P. J.
,
Walsh
,
M. P.
, and
LaForge
,
B. E.
, 2002, “
Quantum Dot Superlattice Thermoelectric Materials and Devices
,”
Science
,
297
, pp.
2229
2232
.
6.
Shakouri
,
A.
, and
Zhang
,
Y.
, 2005, “
On-Chip Solid-State Cooling for Integrated Circuits Using Thin-Film Microrefrigerators
,”
IEEE Trans. Compon. Packag. Technol.
,
28
, pp.
65
69
.
7.
Tritt
,
T. M.
, and
Subramanian
,
M. A.
, 2006, “
Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View
,”
MRS Bull.
,
31
, pp.
188
194
.
8.
Bulman
,
G. E.
,
Siivola
,
E.
,
Shen
,
B.
, and
Venkatasubramanian
,
R.
, 2006, “
Large External Delta T and Cooling Power Densities in Thin-Film Bi2Te3-Superlattice Thermoelectric Cooling Devices
,”
Appl. Phys. Lett.
,
89
,
122117
.
9.
Hone
,
J.
,
Ellwood
,
I.
,
Muno
,
M.
,
Mizel
,
A.
,
Cohen
,
M. L.
,
Zettl
,
A.
,
Rinzler
,
A. G.
, and
Smalley
,
R. E.
, 1998, “
Thermoelectric Power of Single-Walled Carbon Nanotubes
,”
Phys. Rev. Lett.
,
80
, pp.
1042
1045
.
10.
Hsu
,
K. F.
,
Loo
,
S.
,
Guo
,
F.
,
Chen
,
W.
,
Dyck
,
J. S.
,
Uher
,
C.
,
Hogan
,
T.
,
Polychroniadis
,
E. K.
, and
Kanatzidis
,
M. G.
, 2004, “
Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit
,”
Science
,
303
, pp.
818
821
.
11.
Poudel
,
B.
,
Hao
,
Q.
,
Ma
,
Y.
,
Lan
,
Y. C.
,
Minnich
,
A.
,
Yu
,
B.
,
Yan
,
X.
,
Wang
,
D. Z.
,
Muto
,
A.
,
Vashaee
,
D.
,
Chen
,
X. Y.
,
Liu
,
J. M.
,
Dresselhaus
,
M. S.
,
Chen
,
G.
, and
Ren
,
Z.
, 2008, “
High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
,”
Science
,
320
, pp.
634
638
.
12.
Hodes
,
M.
, 2007, “
Optimal Pellet Geometries for Thermoelectric Refrigeration
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
50
58
.
13.
Da Silva
,
L. W.
, and
Kaviany
M.
, 2004, “
Micro-Thermoelectric Cooler: Interfacial Effects on Thermal and Electrical Transport
,”
Int. J. Heat Mass Trans.
,
47
, pp.
2417
2435
.
14.
Litivinovitch
,
V.
, and
Cohen
,
A.B.
, 2009, “
Effect of Thermal Contact Resistance on Optimum Mini-contact TEC Cooling on On-chip Hot Spots
,”
Proceedings of InterPACK0’9
, San Francisco, CA.
15.
Ju
,
Y. S.
, 2008, “
Impact of Interface Resistance on Pulsed Thermoelectric cooling
,”
J. Heat Trans.
,
130
, p.
014502
.
16.
Riffat
,
S. B.
, and
Ma
,
X.L.
, 2003, “
Thermoelectrics: A Review of Present and Potential Applications
,”
App. Therm. Eng.
,
23
(
8
), pp.
913
935
.
17.
Snyder
,
G. J.
,
Fleurial
,
J. P.
,
Caillat
,
T.
,
Yang
,
R. G.
, and
Chen
,
G.
, 2002, “
Supercooling of Peltier Cooler Using a Current Pulse
,”
J. Appl. Phys.
,
92
, pp.
1564
1569
.
18.
Yang
,
R. G.
,
Chen
,
G.
,
Kumar
,
A. R.
,
Snyder
,
G. J.
, and
Fleurial
,
J. P.
, 2005, “
Transient Cooling of Thermoelectric Coolers and its Applications for Microdevices
,”
Energy Convers. Manage.
,
46
(
9-10
), pp.
1407
1421
.
19.
Zhou
,
Q.
,
Bian
,
Z.
, and
Shakouri
,
A.
, 2007, “
Pulsed Cooling of Inhomogeneous Thermoelectric Materials
,”
J. Phys. D: Appl. Phys.
,
40
, pp.
4376
4381
.
20.
Bhattacharyya
,
A.
,
Lagoudas
,
D. C.
,
Wang
,
Y.
, and
Kinra
,
V. K.
, 1995, “
On the Role of Thermoelectric Heat Transfer in the Design of SMA Actuators: Theoretical Modeling and Experiment
,”
Smart Mater. Struct.
,
4
, pp.
252
263
.
21.
Abadie
,
J.
,
Chaillet
,
N.
, and
Lexcellent
,
C.
, 2002, “
An Integrated Shape Memory Alloy Micro-actuator Controlled by Thermoelectric Effect
,”
Sens. Actuators
,
99
, pp.
297
303
.
22.
Garimella
,
S. V.
, 2006, “
Advances in Mesoscale Thermal Management Technologies for Microelectronics
,”
Microelectron. J.
,
37
, pp.
1165
1185
.
23.
Wang
,
P.
,
Bar-Cohen
,
A.
,
Yang
,
B.
,
Solbrekken
,
G. L.
, and
Shakouri
,
A.
, 2006, “
Analytical Modeling of Silicon Thermoelectric Microcooler
,”
J. Appl. Phys.
,
100
(
014501
), pp.
1
13
.
24.
Goncalves
,
L. M.
,
Rocha
,
J. G.
,
Couto
,
C.
,
Alpuim
,
P.
, and
Correia
,
J. H.
, 2008, “
On-chip Array of Thermoelectric Peltier Microcoolers
,”
Sens. Actuators
,
A145-146
, pp.
75
80
.
25.
Gupta
,
M. P.
,
Sayer
,
M. S.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
, 2011, “
Ultrathin Thermoelectric Devices for On-chip Peltier Cooling
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
9
), pp.
1395
1405
.
26.
Thonhauser
,
T.
,
Mahan
,
G. D.
,
Zikatanov
,
L.
, and
Roe
,
J.
, 2004, “
Improved Supercooling in Transient Thermoelectrics
,”
Appl. Phys. Lett.
,
85
(
15
), pp.
3247
3249
.
You do not currently have access to this content.