The next generation of thermal interface materials (TIMs) are currently being developed to meet the increasing demands of high-powered semiconductor devices. In particular, a variety of nanostructured materials, such as carbon nanotubes (CNTs), are interesting due to their ability to provide low resistance heat transport from device-to-spreader and compliance between materials with dissimilar coefficients of thermal expansion (CTEs), but few application-ready configurations have been produced and tested. Recently, we have undertaken major efforts to develop functional nanothermal interface materials (nTIMs) based on short, vertically aligned CNTs grown on both sides of a thin interposer foil and interfaced with substrate materials via metallic bonding. A high-precision 1D steady-state test facility has been utilized to measure the performance of nTIM samples, and more importantly, to correlate performance to the controllable parameters. In this paper, we describe our material structures and the myriad permutations of parameters that have been investigated in their design. We report these nTIM thermal performance results, which include a best to-date thermal interface resistance measurement of 3.5 mm2 K/W, independent of applied pressure. This value is significantly better than a variety of commercially available, high-performance thermal pads and greases we tested, and compares favorably with the best results reported for CNT-based materials in an application-representative setting.

References

References
1.
Xu
,
J.
, and
Fisher
,
T. S.
, 2006, “
Enhanced Thermal Contact Conductance Using Carbon Nanotube Array Interfaces
,”
IEEE Trans. Compon., Packag. Technol.
,
29
(
2
), pp.
261
267
.
2.
Hu
,
X. J.
,
Padilla
,
A. A.
,
Xu
,
J.
,
Fisher
,
T. S.
, and
Goodson
,
K. E.
, 2006, “
3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon
,”
ASME J. Heat Transfer
,
128
, pp.
1109
1113
.
3.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Xu
,
X.
,
Fisher
,
T. S.
, and
Hu
,
H.
, 2007, “
Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,”
J. Appl. Phys.
,
101
, p.
054313
.
4.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
, 2007, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon., Packag. Technol.
,
30
(
1
), pp.
92
100
.
5.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
(
21
), p.
215502
.
6.
Yu
,
C.
,
Shi
,
L.
,
Yao
,
Z.
,
Li
,
D.
, and
Majumdar
,
A.
, 2005, “
Thermal Conductance and Thermopower of an Individual Single-Wall Carbon Nanotube
,”
Nano Lett.
,
5
(
9
), pp.
1842
1846
.
7.
Berber
,
S.
,
Kwon
,
Y.-K.
, and
Tomanek
,
D.
, 2000, “
Unusually High Thermal Conductivity of Carbon Nanotubes
,”
Phys. Rev. Lett.
,
84
(
20
), pp.
4613
4616
.
8.
Wang
,
H.
,
Feng
,
J. Y.
,
Hu
,
X. J.
, and
Ng
,
K. M.
, 2010, “
Reducing Thermal Contact Resistance Using a Bilayer Aligned CNT Thermal Interface Material
,”
Chem. Eng. Sci.
,
65
, pp.
1101
1108
.
9.
Cola
,
B. A.
,
Hodson
,
S. L.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2008, “
Carbon Nanotube Array Thermal Interfaces Enhanced With Paraffin Wax
,”
Proceedings of the ASME Summer Heat Transfer Conference
, Paper No. HT2008-56483.
10.
Zhang
,
Y.
,
Xu
,
Y.
,
Suhir
,
E.
,
Gu
,
C.
, and
Lui
,
X.
, 2008, “
Compliance Properties Study of Carbon Nanofibers (CNFs) Array as Thermal Interface Material
,”
J. Phys. D: Appl. Phys.
,
41
, p.
155105
.
11.
Cola
,
B. A.
,
Xu
,
J.
, and
Fisher
,
T. S.
, 2009, “
Contact Mechanics and Thermal Conductance of Carbon Nanotube Array Interfaces
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3490
3503
.
12.
Cola
,
B. A.
,
Amama
,
P. B.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2008, “
Effects of Growth Temperature on Carbon Nanotube Array Thermal Interfaces
,”
ASME J. Heat Transfer
,
130
, p.
114503
.
13.
Liu
,
X.
,
Zhang
,
Y.
,
Cassell
,
A. M.
, and
Cruden
,
B. A.
, 2008, “
Implications of Catalyst Control for Carbon Nanotube Based Thermal Interface Materials
,”
J. Appl. Phys.
,
104
, p.
084310
.
14.
Maschmann
,
M. R.
,
Amama
,
P. B.
,
Goyal
,
A.
,
Iqbal
,
Z.
, and
Gat
,
R.
, 2006, “
Parametric Study of Synthesis Conditions in Plasma-Enhanced CVD of High-Quality Single-Walled Carbon Nanotubes
,”
Carbon
,
44
, pp.
10
18
.
15.
Cola
,
B. A.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007, “
Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material
,”
Appl. Phys. Lett.
,
90
, p.
093513
.
16.
Tong
,
T.
,
Zhao
,
Y.
, and
Delzeit
,
L.
, 2006, “
Indium Assisted Multiwalled Carbon Nanotube Array Thermal Interface Materials
,”
Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
, pp.
1406
1411
17.
Wang
,
H.
,
Feng
,
J.
,
Hu
,
X.
, and
Ng
,
K. M.
, 2007, “
Synthesis of Aligned Carbon Nanotubes on Double-Sided Metallic Substrate by Chemical Vapor Deposition
,”
J. Phys. Chem. C
,
111
, pp.
12617
12624
.
18.
Hodson
,
S. L.
,
Bhuvana
,
T.
,
Cola
,
B. A.
,
Xu
,
X.
,
Kulkarni
,
G. U.
, and
Fisher
,
T. S.
, 2011, “
Palladium Thiolate Bonding of Carbon Nanotube Thermal Interfaces
,”
ASME J. Electron. Packag.
,
133
, p.
020907
.
19.
Johnson
,
R. D.
,
Bahr
,
D. F.
,
Richards
,
C. D.
,
Richards
,
R. F.
,
McClain
,
D.
,
Green
,
J.
, and
Jiao
,
J.
, 2009, “
Thermocompression Bonding of Vertically Aligned Carbon Nanotube Turfs to Metalized Substrates
,”
Nanotechnology
,
20
, p.
065703
.
20.
Kearns
,
D.
, 2003, “
Improving Accuracy and Flexibility of ASTM D 5470 for High Performance Thermal Interface Materials
,”
Proceedings of 19th IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)
, pp.
129
133
21.
Kempers
,
R.
,
Kolodner
,
P.
,
Lyons
,
A.
, and
Robinson
,
A. J.
, 2008, “
Development of a High-Accuracy Thermal Interface Material Tester
,”
Proceedings of the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
, pp.
221
226
22.
ASTM
, 2006,
Standard Test Methods for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials
, Conshohocken, PA.
23.
Brown
,
K. K.
,
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1995, “
Estimating Uncertainty Intervals for Linear Regression
,”
Proceedings of the 33rd American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting and Exhibit
, pp.
9
12
24.
Lin
,
W.
,
Moon
,
K.-S.
,
Zhang
,
S.
,
Ding
,
Y.
,
Shang
,
J.
,
Chen
,
M.
, and
Wong
,
C.-P.
, 2010, “
Microwave Makes Carbon Nanotubes Less Defective
,”
ACS Nano
,
4
(
3
), pp.
1716
1722
.
You do not currently have access to this content.