This paper studies the flow and temperature patterns in an overhead diffuser based data center. In-situ measurements of the data center were carried out to validate a mathematic model for predicting the effect of different air distribution systems. With the measured data of temperatures and airflow velocities, the mathematic model is constructed using a commercial Computational Fluid Dynamics (CFD) software and experimental data to present a comparison between test results and numerical simulations. The area of the data center is 311 square meters and the heat load of the equipment is 320~360 watt per square meter. In-situ temperatures and humidity of the data center were measured with an Automatic Temperature and Humidity measuring instrument, whose error is ±0.5 °C. The discrepancy of the temperature and velocity between the numerical and experimental results were within ±2.3 °C and ±1.8 m/s, respectively. In addition, analysis shows that changing the volume flow rate of the cold air delivered to some diffusers can optimize the temperature field and thereby save the energy.

References

References
1.
Cho
,
J. K.
, and
Kim
,
B. S.
, 2011, “
Evaluation of Air Management System’s Thermal Performance for Superior Cooling Efficiency in High-Density Data Center
,”
Energy Build.
,
43
, pp.
2145
2155
.
2.
Udakeri
,
R.
,
Mulay
,
V.
, and
Agonafer
,
D.
, 2008, “
Comparison of Overhead Supply and Underfloor Supply with Rear Heat Exchanger in High Density Data Center Clusters
,”
24th IEEE SEMI-THERM Symposium
.
3.
Amemiya
,
Y.
,
Iyengar
,
M.
,
Hamann
,
H.
, O’
Boyle
,
M.
,
Schappert
,
M.
,
Shen
,
J.
, and
Kessel
,
T. V.
, 2007, “
Comparison of Experimental Temperature Results with Numerical Modeling Predictions of a Real-World Compact Data Center Facility
,”
Proceedings of IPCK 2007, ASME Inter PACK
’07,
Vancouver, BC
,
Canada
, Jul.
8
12
.
4.
Schmidt
,
R.
,
Iyengar
,
M.
, and
Caricari
,
J.
, 2010, “
Data Center Housing High Performance Supercomputer Cluster: Above Floor Thermal Measurements Compared to CFD Analysis
,”
J. Electron. Packag.
,
132
, pp.
1
8
.
5.
Schmidt
,
R.
,
Karki
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
, 2001, “
Measurements and Predictions of the Air Flow Distribution through Perforated Tiles in Raised-Floor Data Centers
,”
Proceeding of IPACK’01
,
Kauai
,
HI
, Jul.
8
13
6.
VanGilder
,
J.
, and
Schmidt
,
R.
, 2005, “
Airflow Uniformity through Perforated Tiles in a Raised Floor Data Center
,”
Proceeding of IPACK’05
,
San Francisco, CA
, Jul. 17–22.
7.
Choi
,
J.
,
Kim
,
Y.
,
Sivasubramaniam
,
A.
,
Srebric
,
J.
,
Wang
,
Q.
, and
Lee
,
J.
, 2008, “
A CFD-Based Tool for Studying Temperature in Rack-Mounted Servers
,”
IEEE Trans. Comput.
,
57
(
58
), pp.
1129
1142
.
8.
Patankar
,
S. V.
, 2010, “
Airflow and Cooling in a Data Center
,”
J. Heat Transfer
,
132
,
073001
.
9.
Sun
,
H. S.
, and
Lee
,
S. E.
, 2006, “
Case Study of Data Centers’ Energy Performance
,”
Energy Build.
,
38
, pp.
522
533
.
10.
Iyengar
,
M.
,
Schmidt
,
R.
,
Sharma
,
A.
,
Vicker
,
G. M.
, and
Shrivastava
,
S.
, 2005, “
Thermal Characterization of Non-Raised Floor Air Cooled Data Centers Using Numerical Modeling
,”
Proceedings of IPACK
2005, ASME Paper No. IPACK 2005-73387.
11.
Iyengar
,
M.
,
Schmidt
,
R. R.
,
Hamann
,
H.
, and
Vangilder
,
J.
, 2007, “
Comparison Between Numerical and Experimental Temperature Distributions in a Small Data Center Test Cell
,”
Proceedings of IPACK
2007, ASME Paper No. IPACK 2007-33508.
12.
Cho
,
J. K.
,
Lim
,
T.
, and
Kim
,
B. S.
, 2009, “
Measurements and Predictions of the Air Distribution Systems in High Compute Density (Internet) Data Centers
,”
Energy Build.
,
41
, pp.
1107
1115
.
13.
Shrivastava
,
S. K.
,
Iyengar
,
M.
,
Sammakia
,
B. G.
,
Schmidt
,
R.
, and
Vangilder
,
J. W.
, 2006, “
Experimental-Numerical Comparison for a High-Density Data Center: Hot Spot Heat Fluxes in Excess of 500 W/ft2
,”
Proceedings of the Inter Society Conference on Thermal Phenomena (ITherm)
,
San Diego
,
CA
.
14.
Cruz
,
E.
,
Joshi
,
Y.
,
Iyengar
,
M.
, and
Schmidt
,
R.
, 2009, “
Comparison of Numerical Modeling to Experimental Data in a Small Data Center Test Cell
,”
Proceeding of the ASME 2009 Inter PACK Conference
, IPACK2009,
San Francisco
,
CA
, Jul.
19
23
.
15.
Cruz
,
E.
,
Joshi
,
Y.
,
Iyengar
,
M.
, and
Schmidt
,
R.
, 2009, “
Comparison of Numerical Modeling to Experimental Data in a Small, Low Power Data Center Test Cell
,”
Proceeding of the ASME 2009 Inter IMEC & Exposition
, IMECE 2009,
Lake Buena Vista
,
FL
, Nov.
13
19
.
16.
Boucher
,
T. D.
,
Auslander
,
D. M.
,
Bash
,
C. E.
,
Federspiel
,
C. C.
, and
Patel
,
C.
D., 2006, “
Viability of Dynamic Cooling Control in a Data Center Environment
,”
J. Electron. Packag.
,
128
, pp.
137
144
.
17.
Kang
,
S.
,
Schmidt
,
R. R.
,
Kelkar
,
K. M.
,
Radmehr
,
A.
, and
Patankar
,
S. V.
, 2001, “
A Methodology for the Design of Perforated Tiles in Raised Floor Data Centers Using Computational Flow Analysis
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(2), pp.
177
183
.
18.
Shrivastava
,
S. K
,
Sammakia
,
B.
,
Schmidt
,
R.
, and
Iyengar
,
M.
, 2005, “
Comparative Analysis of Different Data Center Airflow Management Configurations
,”
Proceedings of the International Electronic Packaging Technical Conference and Exhibition
,
San Francisco
,
CA
.
19.
Karki
,
K. C.
, and
Patankar
,
S. V.
, 2006, “
Airflow Distribution Through Perforated Tiles in Raised-Floor Data Centers
,”
Build. Environ.
41
, pp.
734
744
.
You do not currently have access to this content.