Electrical contacts influence the reliability and performance of relays, electrical connectors, high power connectors, and similar systems, and are therefore a key region which needs to be considered. In the current study, a new inclusive multiphysics (involving mechanical, electrical, and thermal fields) finite element model (FEM) of a 35A automotive connector has been developed. The contact resistance is predicted using a multiscale rough surface contact method and is embedded in the multiphysics FEM. The coupled connector model is solved to obtain stresses, displacements, contact pressures, electrical and thermal contact resistances, voltage, current density, and temperature distributions. It appears that the current flows mostly through very small regions that are usually near the contacting surfaces in the connector, thereby suggesting that the available conducting material can be more efficiently used by developing optimized connector designs. Through analytical calculations and experimental measurements of temperature rise (ΔT or change in temperature) for the cable and the connector, it is believed that a large portion of the temperature rise in actual 35A connectors is due to the Joule heating in the supply cables. The model is a powerful tool that can be used for the basic connector characterization, prototype evaluation, and design through various material properties, and surface finishes.

References

References
1.
Miller
,
J. M.
, 2004,
Propulsion Systems for Hybrid Vehicles
(IEE Power and Energy Series), MPB Books Limited
,
Bodmin, Cornwall
.
2.
Williams
,
J.
, 2005,
Engineering Tribology
,
Cambridge University Press
,
New York
.
3.
Jackson
,
R. L.
, and
Kogut
,
L.
, 2007, “
Electrical Contact Resistance Theory for Anisotropic Conductive Films Considering Electron Tunneling and Particle Flattening
,”
IEEE Trans. Compon Packag Technol
,
30
(
1
), pp.
59
66
.
4.
Kogut
,
L.
, 2005, “
Electrical Performance of Contaminated Rough Surfaces in Contact
,”
J. Appl. Phys.
,
97
(
10
),
103723
.
5.
Kogut
,
L.
, and
Komvopoulos
,
K.
, 2005, “
Analytical Current-Voltage Relationships for Electron Tunneling Across Rough Interfaces
,”
J. Appl. Phys.
,
97
(
7
),
073701
.
6.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
, 1966, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
(1442), pp.
300
319
.
7.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1987, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
8.
Jackson
,
R. L.
, 2006, “
The Effect of Scale Dependant Hardness on Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
STLE Tribol. Trans.
,
49
(
2
), pp.
135
150
.
9.
Jackson
,
R. L.
, and
Green
,
I.
, 2006, “
A Statistical Model of Elasto-Plastic Asperity Contact Between Rough Surfaces
,”
Tribol. Int.
,
39
(
9
), pp.
906
914
.
10.
Kogut
,
L.
, and
Etsion
,
I.
, 2003, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
STLE Tribol. Trans.
,
46
(
3
), pp.
383
390
.
11.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.
12.
Kogut
,
L.
, and
Komvopoulos
,
K.
, 2003, “
Electrical Contact Resistance Theory for Conductive Rough Surfaces
,”
J. Appl. Phys.
,
94
(
5
), pp.
3153
3162
.
13.
Ciavarella
,
M.
,
Murolo
,
G.
,
Demelio
,
G.
, and
Barber
,
J. R.
, 2004, “
Elastic Contact Stiffness and Contact Resistance for the Weierstrass Profile
,”
J. Mech. Phys. Solids
,
52
(
6
), pp.
1247
1265
.
14.
Ganti
,
S.
, and
Bhushan
,
B.
, 1995, “
Generalized Fractal Analysis and Its Applications to Engineering Surfaces
,”
Wear
,
180
(
1-2
), pp.
17
34
.
15.
Kogut
,
L.
, and
Jackson
,
R. L.
, 2006, “
A Comparison of Contact Modeling Utilizing Statistical and Fractal Approaches
,”
ASME J. Tribol.
,
128
(
1
), pp.
213
217
.
16.
Bora
,
C. K.
,
Flater
,
E. E.
,
Street
,
M. D.
,
Redmond
,
J. M.
,
Starr
,
M. J.
,
Carpick
,
R. W.
, and
Plesha
,
M. E.
, 2005, “
Multiscale Roughness and Modeling of MEMS Interfaces
,”
Tribol. Lett.
,
19
(
1
), pp.
37
48
.
17.
Ciavarella
,
M.
,
Demelio
,
G.
,
Barber
,
J. R.
, and
Jang
,
Y. H.
, 2000, “
Linear Elastic Contact of the Weierstrass Profile
,”
Proc. R. Soc. London, Ser. A
,
456
(1994), pp.
387
405
.
18.
Jackson
,
R. L.
, and
Streator
,
J. L.
, 2006, “
A Multiscale Model for Contact Between Rough Surfaces
,”
Wear
,
261
(
11-12
), pp.
1337
1347
.
19.
Kogut
,
L.
, and
Etsion
,
I.
, 2000, “
Electrical Conductivity and Friction Force Estimation in Compliant Electrical Connectors
,”
Tribol. Trans.
,
43
(
4
), pp.
816
822
.
20.
Jackson
,
R. L.
, 2010, “
An Analytical Solution to an Archard-Type Fractal Rough Surface Contact Model
,”
STLE Tribol. Trans.
,
53
(
4
), pp.
543
553
.
21.
Wilson
,
W. E.
,
Angadi
,
S. V.
, and
Jackson
,
R. L.
, 2010, “
Surface Separation and Contact Resistance Considering Sinusoidal Elastic-Plastic Multi-Scale Rough Surface Contact
,”
Wear
,
268
(
1-2
), pp.
190
201
.
22.
Archard
,
J. F.
, 1957, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. London Ser. A
,
243
(1233), pp.
190
205
.
23.
Ciavarella
,
M.
, and
Demelio
,
G.
, 2001, “
Elastic Multiscale Contact of Rough Surfaces: Archard’s Model Revisited and Comparisons With Modern Fractal Models
,”
ASME J. Appl. Mech.
,
68
(
3
), pp.
496
498
.
24.
Persson
,
B. N. J.
, 2001, “
Elastoplastic Contact Between Randomly Rough Surfaces
,”
Phys. Rev. Lett.
,
87
(
11
),
116101
.
25.
Angadi
,
S. V.
,
Wilson
,
W. E.
,
Jackson
,
R. L.
,
Flowers
,
G. T.
, and
Rickett
,
B. I.
, 2008, “
A Multi-Physics Finite Element Model of an Electrical Connector Considering Rough Surface Contact
,”
Proceedings of the 54th IEEE Holm Conference on Electrical Contacts
,
Orlando, FL
, pp.
168
177
.
26.
Bryant
,
M. D.
, 1993, “
Resistance Buildup in Electrical Connectors Due to Fretting Corrosion of Rough Surfaces
,”
Proceedings of the 39th IEEE Holm Conference on Electrical Contacts
,
Pittsburgh, PA
, pp.
178
190
.
27.
Ossart
,
F.
,
Noel
,
S.
,
Alamarguy
,
D.
,
Correia
,
S.
, and
Gendre
,
P.
, 2007, “
Multilayer Contacts in Electrical Connectors: Experimental Results and Modelling
,”
WIT Trans. Eng. Sci.
,
55
, pp.
89
98
.
28.
Swingler
,
J.
, and
Mcbride
,
J. W.
, 2002, “
Fretting Corrosion and the Reliability of Multicontact Connector Terminals
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
670
676
.
29.
Wilson
,
W. E.
,
Angadi
,
S. V.
, and
Jackson
,
R. L.
, 2008, “
Electrical Contact Resistance Considering Multi-Scale Roughness
,”
Proceedings of the 54th IEEE Holm Conference on Electrical Contacts
,
Orlando, FL
, pp.
190
197
.
30.
Angadi
,
S. V.
,
Jackson
,
R. L.
,
Choe
,
S.-Y.
,
Flowers
,
G. T.
,
Suhling
,
J. C.
,
Chang
,
Y.-K.
, and
Ham
,
J.-K.
, 2009, “
Reliability and Life Study of Hydraulic Solenoid Valve—Part 1—a Multi-Physics Finite Element Model
,”
Eng. Failure Anal.
,
16
(
3
), pp.
874
887
.
31.
Angadi
,
S. V.
,
Jackson
,
R. L.
,
Choe
,
S.-Y.
,
Flowers
,
G. T.
,
Suhling
,
J. C.
,
Chang
,
Y.-K.
,
Ham
,
J.-K.
, and
Bae
,
J.-I.
, 2009, “
Reliability and Life Study of Hydraulic Solenoid Valve—Part 2—Experimental Study
,”
Eng. Failure Anal.
,
16
(
3
), pp.
944
963
.
32.
Incropera
,
F.
,
Dewitt
,
D.
,
Bergman
,
T.
, and
Lavine
,
A.
, 2007,
Fundamentals of Heat and Mass Transfer
,
John Wiley & Sons
,
New Jersey
.
You do not currently have access to this content.