Although thermal performance is always a critical issue in electronic packaging design at every packaging level, there is a significant lack of reliable and efficient thermal modeling and analysis techniques at the silicon chip level. Sharp temperature increases within small areas, which are called “hot spots”, often occur in silicon chips. For more efficient designs, the temperature and location of hot spots need to be predicted with acceptable accuracy. With millions of transistor gates acting as heat sources, accurate thermal modeling and analysis of silicon chips at micrometer level has not been possible using conventional techniques. In the present study, an efficient and accurate multi-level thermal modeling and analysis technique has been developed. The technique combines finite element analysis sub-modeling and a superposition method for more efficient modeling and simulation. Detailed temperature distribution caused by a single heat source is obtained using the finite element sub-modeling technique, while the temperature rise distribution caused by multiple heat sources is obtained by superimposing the finite element analysis result. Using the proposed thermal modeling methodology, one case of finite element analysis with a single heat source is sufficient for modeling a silicon chip with millions of transistors acting as heat sources. When the whole package is modeled using the finite element method, the effect of the package and its boundary conditions are also included in the superposition results, which makes it possible to model a large number of transistors on a silicon chip. The capabilities of the proposed methodology are demonstrated through a case study involving thermal modeling and analysis of a microprocessor chip with 4 × 106 transistors.

References

References
1.
Tummala
,
R.
, 2001,
Fundamentals of Microsystems Packaging
,
McGraw-Hill
,
New York
.
2.
Saint
,
C.
, and
Saint
,
J.
, 2002,
IC Mask Design: Essential Layout Techniques
,
McGraw-Hill
,
New York
.
3.
Lindsted
,
R. D.
, and
Surty
,
R. J.
, 1972, “
Steady-State Junction Temperatures of Semiconductor Chips
,”
IEEE Trans. Electron Devices
,
19
(
1
), pp.
41
44
.
4.
Kadambi
,
V.
, and
Abuaf
,
N.
, 1985, “
An Analysis of the Thermal Response of Power Chip Packages
,”
IEEE Trans. Electron Devices
,
32
(
6
), pp.
1024
1033
.
5.
Latif
,
M.
, and
Bryant
,
P. R.
, 1982, “
Network Analysis Approach to Multidimensional Modeling of Transistors Including Thermal Effects
,”
IEEE Trans. Comput.-Aided Des.
,
1
(
2
), pp.
94
101
.
6.
Huang
,
W.
,
Ghosh
,
S.
,
Sankaranarayanan
,
K.
,
Skadron
,
K.
, and
Stan
,
M. R.
, 2005, “
Parameterized Physical Compact Thermal Modeling
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
4
), pp.
615
622
.
7.
Schafer
,
B. C.
, and
Kim
,
T.
, 2008, “
Hotspots Elimination and Temperature Flattening in VLSI Circuits
,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
,
16
(
11
), pp.
1475
1487
.
8.
Li
,
P.
, and
Pileggi
,
L.
, 2006, “
IC Thermal Simulation and Modeling Via Efficient Multigrid-Based Approaches
,”
IEEE Trans. Comput.-Aided Des. Integr. Syst.
,
25
(
9
), pp.
1763
1776
.
9.
Pape
,
H.
,
Beyfuss
,
M.
, and
Kutscherauer
,
R.
, 1997, “
Thermal Management of Packaged IC by Experimentally Verified Finite Element Modeling
,”
Proceeding Electronic Packaging Technology Conference
, pp.
58
64
.
10.
Xu
,
G.
, 2006, “
Thermal Modeling of Multi-Core Processors
,”
Proceedings of the IEEE I-THERM Conference
, pp.
96
100
.
11.
Turowski
,
M.
,
Dooley
,
S.
,
Wilkerson
,
P.
,
Raman
,
A.
, and
Casto
,
M.
, 2008, “
Full-Chip to Device Level 3D Thermal Analysis of RF Integrated Circuits
,”
Proceedings of the IEEE I-THERM Conference
, pp.
315
324
.
12.
Cheng
,
Y.-K.
, and
Kang
,
S.-M.
, 1995, “
Chip-Level Thermal Simulator to Predict VLSI Chip Temperature
,”
Proceedings of International Symposium on Circuits and Systems
, pp.
1392
1395
.
13.
Sikka
,
K. K.
, 2005, “
An Analytical Temperature Prediction Method for a Chip Power Map
,”
Proceedings Semiconductor Thermal Measurement and Managment Symposium
, pp.
161
167
.
14.
Huang
,
W.
,
Humenay
,
E.
,
Skadron
,
K.
, and
Stan
,
M. R.
, 2005, “
The Need for a Full-Chip and Package Thermal Model for Thermally Optimized IC Designs
,”
Proceedings of International Symposium Low Power Electronics and Design
, pp.
245
250
.
15.
Raju
,
U.
,
Kaisare
,
A.
,
Agonafer
,
D.
,
Haji-sheikh
,
A.
,
Chrysler
,
G.
, and
Mahajan
,
R.
, 2008, “
Multi-Objective Optimization Entailing Computer Architecture and Thermal Design for Non-Uniformly Powered Microprocessors
,”
Proceeding IEEE I-THERM
, pp.
432
440
.
16.
Wu
,
W.
,
Jin
,
L.
,
Yang
,
J.
,
Liu
,
P.
, and
Tan
,
S. X. -D.
, 2006, “
A Systematic Method for Functional Unit Power Estimation in Microprocessors
,”
Proceedings of Annual Conference on Design Automatation
, pp.
554
557
.
17.
MIlls
,
A. F.
, 1998,
Heat Transfer
,
Prentice Hall
,
Upper Saddle River, NJ
.
18.
Tyagi
,
S.
,
Alavi
,
M.
,
Bigwood
,
R.
,
Bramblett
,
T.
,
Brandenburg
,
J.
,
Chen
,
W.
,
Crew
,
B.
,
Hussein
,
M.
,
Jacob
,
P.
,
Kenyon
,
C.
,
Lo
,
C.
,
McIntyre
,
B.
,
Ma
,
Z.
,
Moon
,
P.
,
Nguyen
,
P.
,
Rumaner
,
L.
,
Schweinfurth
,
R.
,
Sivakumar
,
S.
,
Stettler
,
M.
,
Thompson
,
S.
,
Tufts
,
B.
,
Xu
,
J.
,
Yang
,
S.
, and
Bohr
,
M.
, 2000, “
A 130 Nm Generation Logic Technology Featuring 70 Nm Transistors, Dual Vt Transistors and 6 Layers of Cu Interconnects
,”
Proceeding Electron Devices Meeting
, pp.
567
570
.
19.
Chen
,
G.
, 1996, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
539
545
.
20.
Pop
,
E.
, and
Goodson
,
K. E.
, 2006, “
Thermal Phenomena in Nanoscale Transistors
,”
ASME J. Electron. Packag.
,
128
(
2
), pp.
102
108
.
21.
Ni
,
C.
, and
Murthy
,
J.
, 2008, “
Sub-Micron Thermal Transport Modeling by Phonon Boltzmann Transport With Anisotropic Relaxation Times
,”
Proceedings of IEEE T-THERM
, pp.
1087
1096
.
22.
Raleva
,
K.
,
Vasileska
,
D.
,
Goodnick
,
S. M.
, and
Nedjalkov
,
M.
, 2008, “
Modeling Thermal Effects in Nanodevices
,”
IEEE Trans. Electron Devices
,
55
(
6
), pp.
1306
1316
.
23.
Vasileska
,
D.
,
Raleva
,
K.
, and
Goodnick
,
S. M.
, 2008, “
Modeling Heating Effects in Nanoscale Devices: The Present and the Future
,”
J. Comput. Electron.
,
7
(
2
), pp.
66
93
.
24.
Pop
,
E.
,
Sinha
,
S.
, and
Goodson
,
K. E.
, 2006, “
Heat Generation and Transport in Nanometer-Scale Transistors
,”
Proc. IEEE
,
94
(
8
), pp.
1587
1601
.
You do not currently have access to this content.