Silver (Ag) foils are bonded to alumina substrates by a low temperature solid state bonding process. The alumina substrate is premetalized with 40 nm titanium tungsten (TiW) and 2.54 μm gold (Au). The bonding temperature is just 260 °C, compatible with the peak reflow temperature of lead-free (Pb-free) solders used in electronic industries. The Ag foil is quite soft and ductile. It can deform to mate with the Au surface on alumina. Thus, only 1000 psi of static pressure is needed to bring Ag atoms and Au atoms within atomic distance on the interface. Ag has superior physical properties. It has the highest electrical and thermal conductivities among the metals. Scanning electron microscope (SEM) images show that the Ag foil is well bonded to the Au layer on alumina. A standard shear test is performed to determine the shear strength of the bonding. The shear strength of five samples tested far exceeds the strength requirement of MIL-STD-883 G standard.

References

1.
Yoshino
,
Y.
, 1989, “
Role of Oxygen in Bonding Copper to Alumina
,”
J. Am. Ceram. Soc.
,
72
(
8
), pp.
1322
1327
.
2.
Dupont
,
L.
,
Khatir
,
Z.
,
Lefebvre
,
S.
, and
Bontemps
,
S.
, 2006, “
Effects of Metallization Thickness of Ceramic Substrates on the Reliability of Power Assemblies Under High Temperature Cycling
,”
Microelectron. Reliab.
,
46
(
9–11
), pp.
1766
1771
.
3.
Yoshino
,
Y.
,
Ohtsu
,
H.
, and
Shibata
,
T.
, 1992, “
Thermally Induced Failure of Copper-Bonded Alumina Substrates for Electronic Packaging
,”
J. Am. Ceram. Soc.
,
75
(
12
), pp.
3353
3357
.
4.
Schulz-Harder
,
J.
, 2001, “
HPS DBC Substrates for High Reliable Applications
,”
Proceedings of IMAPS Nordic
, Oslo, Norway.
5.
Schulz-Harder
,
J.
, 1997, “
Reliability of Direct Copper Bonded (DBC) Substrates
,”
Proceedings of ISHM 11th European Microelectronic Conference
, Venice, Italy.
6.
Schulz-Harder
,
J.
, 2003, “
Advantages and New Development of Direct Bonded Copper Substrates
,”
Microelectron. Reliab.
,
43
(
3
), pp.
359
365
.
7.
Cusano
,
D. A.
,
Loughran
,
J. A.
, and
Sun
,
S. E.
, 1976, “
Direct Bonding of Metals to Ceramics and Metals
,” U.S. Patent No. 3,994,430.
8.
Dalgleish
,
B. J.
,
Trumble
,
K. P.
, and
Evans
,
A. G.
, 1989, “
The Strength and Fracture of Alumina Bonded With Aluminum Alloys
,”
Acta Metallic.
,
37
(
7
), pp.
1923
1931
.
9.
Ning
,
X. S.
,
Lin
,
Y.
,
Xu
,
W.
,
Peng
,
R.
,
Zhou
,
H.
, and
Chen
,
K.
, 2003, “
Development of a Directly Bonded Aluminum/Alumina Power Electronic Substrate
,”
Mater. Sci. Eng. B
,
99
(
1–3
), pp.
479
482
.
10.
Knoll
,
H.
,
Weidenauer
,
W.
,
Ingram
,
P.
,
Bennemann
,
S.
,
Brand
,
S.
, and
Petzold
,
M.
, 2010, “
Ceramic Substrates With Aluminum Metallization for Power Application
,”
Proceedings of IEEE Electronic System-Integration Technology Conference
, Berlin, Germany, pp.
1
5
.
11.
Lei
,
T. G.
,
Calata
,
J. N.
,
Ngo
,
K. D. T.
, and
Lu
,
G. Q.
, 2009, “
Effects of Large Temperature Cycling Range on Direct Bond Aluminum Substrate
,”
IEEE Trans. Device Mater. Reliab.
,
9
(
4
), pp.
563
568
.
12.
Lee
,
C. C.
,
Wang
,
D. T.
, and
Choi
,
W. S.
, 2006, “
Design and Construction of a Compact Vacuum Furnace for Scientific Research
,”
Rev. Sci. Instrum.
,
77
(
12
), p.
125104
.
13.
Wang
,
P. J.
,
Kim
,
J. S.
, and
Lee
,
C. C.
, 2008, “
Direct Laminating Silver Foils on Copper Substrate
,”
J. Mater. Sci.: Mater. Electron.
,
19
(
11
), pp.
1097
1099
.
14.
Available online: http://www.q-tech.com/assets/tests/std883_2019.pdf
You do not currently have access to this content.