This paper investigates the use of thermoelectric (TE) devices for thermal management of downhole electronics. The research carried out will help in the mitigation of costs associated with thermal damage of downhole electronics used in oil drilling industry. An experimental set up was prepared where a TE device was used in conjunction with heat exchanger and a cold plate to remove heat from electronics module. A finned copper rod in contact with hot side of TE device was used to reject the heat out to the ambient. The experimental set up was housed inside a cylindrical vacuum flask, which was in turn placed inside an oven to simulate thermally harsh downhole conditions. Experiments were carried out with electronics heat dissipation of 0–8 W and ambient temperature of 140 °C. Due to the differences in the environmental conditions of the laboratory and the practical downhole scenario, the experiment could not completely capture the conditions of downhole heat rejection. A mathematical model of the experimental apparatus was prepared and validated against the experimental results. The model was used to predict performance of a TE device for thermal management of downhole electronics at an ambient temperature of 200–250 °C. It was observed that the ability of the thermal management system to keep electronics cool varied from 30 °C to a few degrees below the surrounding temperature, for chip wattage varying from 0 W to 8 W, respectively.

References

1.
James
,
P.
, 2006, “
Data Driven Drilling
,”
Comput. Control Eng. J.
,
17
(
4
), pp.
36
39
.
2.
Boyes
,
J.
, 1981, “
The Eyes of the Oil Industry
,”
Electron. Power
,
27
(
6
), pp.
484
488
.
3.
Boyes
,
J.
, 1981, “
Erratum: The Eyes of the Oil Industry
,”
Electron. Power
,
27
(
9
), pp.
594
.
4.
Den
Boer
,
J. J.
, 1999, “
The Use of High Temperature Electronics in Downhole Applications
,” The Third European Conference on High
Temperature Electronics, HITEN 99
, pp.
149
152
.
5.
Traeger
,
R. K.
, and
Lysne
,
P. C.
, 1988, “
High Temperature Electronics Application in Well Logging
,”
IEEE Trans. Nucl. Sci.
,
35
(
1
), Part 1–2, pp.
852
854
.
6.
Anyuan
,
C.
,
Ummaneni
,
R. B.
,
Nilssen
,
R.
, and
Nysveen
,
A.
, 2008, “
Review of Electrical Machine in Downhole Applications and the Advantages
,” EPE-PEMC 13th Power Electronics and Motion Control Conference, pp.
799
803
.
7.
Tubel
,
P.
,
Bergeron
,
C.
, and
Bell
,
S.
, 1992, “
Mud Pulser Telemetry System for Down Hole Measurement-While-Drilling
,” Instrumentation and Measurement
Technology Conference, IMTC’92
, pp.
219
223
.
8.
Cohen
,
J.
,
Rogers
,
D. J.
,
Malcore
,
E.
, and
Estep
,
J.
, 2002, “
The Qwest for High Temperature MWD and LWD Tools
,”
GasTIPS, GasTIPS is a publication of the Gas Technology Institute, US Department of Energy and Hart Energy Publishing
.
9.
Norman
,
J. H.
, 2001,
Non-Technical Guide to Petroleum Geology, Exploration, Drilling, and Production
, Penn Well Corp. ISBN 0-87814-823-X.
10.
National Energy Technology Laboratory, Deep Trek program. US Department of Energy. Available at http://www.netl.doe.gov/technologies/oil-gas/EP_Technologies/AdvancedDrilling/DeepTrek/
11.
Braun
,
T.
,
Becker
,
K.-F.
,
Sommer
,
J.-P.
,
Loher
,
T.
,
Schottenloher
,
K.
,
Kohl
,
R.
,
Pufall
,
R.
,
Bader
,
V.
,
Koch
,
M.
,
Aschenbrenner
,
R.
, and
Reichl
,
H.
, 2005, “
High Temperature Potential of Flip Chip Assemblies for Automotive Applications
,” Proceedings of 55th Electronic Components and Technology Conference, Vol.
1
, pp.
376
383
.
12.
Dreike
,
P. L.
,
Fleetwood
,
D. M.
,
King
,
D. B.
,
Sprauer
,
D. C.
, and
Zipperian
,
T. E.
, 1994, “
An Overview of High-Temperature Electronic Device Technologies and Potential Applications
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
,
17
(
4
), pp.
594
609
.
13.
Werner
,
M. R.
, and
Fahrner
,
W. R.
, 2001, “
Review on Materials, Microsensors, Systems and Devices for High-Temperature and Harsh-Environment Applications
,”
IEEE Trans. Ind. Electron.
,
48
(
2
), pp.
249
257
.
14.
Shoulung
,
C.
,
Tsai
,
C. Z.
,
Kao
,
N.
, and
Enboa
,
W.
, 2005, “
Mechanical Behavior of Flip Chip Packages Under Thermal Loading
,”
Proceedings of 55th Electronic Components and Technology Conference
, Vol.
2
, pp.
1677
1682
.
15.
Braun
,
T.
,
Becker
,
K.-F.
,
Koch
,
M.
,
Bader
,
V.
,
Aschenbrenner
,
R.
, and
Reichl
,
H.
, 2006, “
High-Temperature Reliability of Flip Chip Assemblies
,”
Microelectron. Reliab.
,
46
(
1
), pp.
144
154
.
16.
Puttlitz
,
K. J.
, 1990, “
Corrosion of Pb-50In Flip-Chip Interconnections Exposed to Harsh Environment
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
(
1
), pp.
188
193
.
17.
Lall
,
P.
,
Singh
,
N.
,
Suhling
,
J. C.
,
Strickland
,
M.
, and
Blanche
,
J.
, 2005, “
Thermo-Mechanical Reliability Tradeoffs for Deployment of Area Array Packages in Harsh Environments
,”
IEEE Trans. Compon. Packag. Technol.
,
28
(
3
), pp.
457
466
.
18.
Stentoft
,
K.
, and
Petersen
,
M. L.
, 2008, “
Electronics in Harsh Environments-Product Verification and Validation
,”
Reliability and maintainability symposium, RAMS
, pp.
456
462
.
19.
Krkac
,
O.
,
Bilas
,
B.
, and
Ambrus
,
D.
, 2005, “
Thermal Uprating of a Mixed Signal Microcontroller
,” Proceedings of the IEEE International Symposium on Industrial Electronics, ISIE 2005, Vol.
3
, pp.
1111
1116
.
20.
Ohme
,
B.
, 2007, “Deep Trek Re-configurable Processor for Data Acquisition (RPDA),” Report prepared for National Energy Technology Laboratory; U.S. Department of Energy; under DOE Award No.: DE-FC26-06NT42947; Available at http://www.netl.doe.gov/technologies/oilgas/publications/EPreports/NT42947_TSA.pdf Last accessed October 16, 2009.
21.
Tarapata
,
G.
,
Weremczuk1
,
J.
,
Jachowicz1
,
R.
,
Shan
,
X. C.
, and
Shi
,
C. W. P.
, 2009, “
Construction of Wireless Sensor for Harsh Environment Operation
,” Proceedings of the Eurosensors XXIII Conference,
Procedia Chemistry
, Vol.
1
, pp.
465
468
.
22.
De Jong
,
P. C.
, and
Meijer
,
G. C. M.
, 1999, “
A Smart Accurate Pressure-Transducer for High-Temperature Applications [in Oil Wells]
,” Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, IMTC/99, Vol.
1
, pp.
309
314
.
23.
Ambrus
,
D.
,
Bilas
,
V.
, and
Vasic
,
D.
, 2004, “
A High-Temperature Low-Cost Rotational Speed Transducer for Oil-Well Telemetry
,” Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference, IMTC, Vol.
2
, pp.
1071
1074
.
24.
Guidotti
,
R. A.
,
Reinhardt
,
F. W.
, and
Odinek
,
J.
, 2004, “
Overview of High-Temperature Batteries for Geothermal and Oil/Gas Borehole Power Sources
,”
J. Power Sources
,
136
(
2
), pp.
257
262
.
25.
Prazak
,
P. R.
, 1982, “
A-55 to + 200 °C 12-Bit Analog-to-Digital Converter
,”
IEEE Trans. Ind. Electron.
,
IE-29
(
2
), pp.
118
123
.
26.
Longtin
,
J.
,
Sampath
,
S.
,
Tankiewicz
,
S.
,
Gambino
,
R. J.
, and
Greenlaw
,
R. J.
, 2004, “
Sensors for Harsh Environments by Direct-Write Thermal Spray
,”
IEEE Sensors J.
,
4
(
1
), pp.
118
121
.
27.
De Jong
,
P. C.
, and
Meijer
,
G. C. M.
, 2000, “
A High-Temperature Electronic System for Pressure-Transducers
,”
IEEE Trans. Instrum. Meas.
,
49
(
2
), pp.
365
370
.
28.
Evans
,
J. L.
,
Lall
,
P.
,
Knight
,
R.
,
Crain
,
E.
,
Shete
,
T.
, and
Thompson
,
J. R.
, 2008, “
System Design Issues for Harsh Environment Electronics Employing Metal-Backed Laminate Substrates
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
1
), pp.
74
85
.
29.
Chalker
,
P. R.
, 1999, “
Wide Bandgap Semiconductor Materials for High Temperature Electronics
,”
Thin Solid Films
,
343–344
, pp.
616
622
.
30.
Bansal
,
S.
,
Cho
,
J.
,
Durocher
,
K.
,
Kapusta
,
C.
,
Knobloch
,
A.
,
Shaddock
,
D.
,
Schoeller
,
H.
, and
Xia
,
H.
, 2007, “
Harsh-Environment Packaging for Down-hole Gas and Oil Exploration
,” A report prepared for: United States Department of Energy;
National Energy Technology Laboratory; by GE Global Research Center
,
Niskayuna NY 12118
; November 18, 2007;
Under DOE Award Number: DE-FC26-06NT42950; Last accessed at
http://www.osti.gov/bridge/purl.cover.jsp?purl=/932889-XssxCt/on 16th of October 2009.
31.
Grzybowski
,
R. R.
, 1998, “
Advances in Electronic Packaging Technologies to Temperatures as High as 500 °C
,” High-Temperature Electronic Materials, Devices and Sensors Conference, pp.
207
215
.
32.
Mehregany
,
M.
,
Zorman
,
C. A.
,
Rajan
,
N.
, and
Chien Hung
,
W.
, 1998, “
Silicon Carbide MEMS for Harsh Environments
,”
Proc. IEEE
,
86
(
8
), pp.
1594
1609
.
33.
First High-Temperature Electronics Product Survey, 2005, A report prepared by Sandia National Laboratories. Available from US department of Commerce National Technical Information Service. Online order can be placed at the following URL: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online
34.
Jakaboski
,
J.
, 2004, “
Innovative Thermal Management of Electronics Used in Oil-Well Logging
,” Master of Science in Mechanical Engineering thesis, GWW School of ME, Georgia Institute of Technology, Atlanta.
35.
Bennett
,
G. A.
, 1992, “
Analytical Approach to Selecting and Designing a Miniature Downhole Refrigerator
,”
J. Energy Resour. Technol.
,
114
, pp.
339
344
.
36.
Bennett
,
G. A.
, 1988, “Active Cooling for Downhole Instrumentation: Preliminary Analysis and System Selection,” A report issued in public domain by Los Alamos National Laboratory. Available at http://www.osti.gov/bridge/purl.cover.jsp?purl=/5360643-5IxyoX/. Last accessed 15th October 2009.
37.
Rafie
,
S.
, 2007, “
Thermal Management of Downhole Oil and Gas Logging Sensors for HTHP Applications Using Nanoporous Materials
,” Proceedings of the 2nd Energy Nano Technology International Conference,
Santa Clara, California
.
38.
Moores
,
K. A.
,
Joshi
,
Y. K.
, and
Miller
,
G.
, 1999, “
Performance Assessment of Thermoelectric Coolers for Use in High Temperature Electronics Applications
,” Eighteenth International Conference on Thermoelectrics, pp.
31
34
.
39.
Furue
,
T.
,
Hayashida
,
T.
,
Imaizumi
,
Y.
,
Inoue
,
T.
,
Nagao
,
K.
,
Nagai
,
A.
,
Fujii
,
I.
, and
Sakurai
,
T.
, 1998, “
Case Study on Thermoelectric Generation System Utilizing the Exhaust Gas of Interal-Combustion Power Plant
,” XVII International Conference on Thermoelectrics, pp.
473
478
.
40.
Fleurial
,
J.-P.
,
Borshchevsky
,
A.
,
Caillat
,
T.
, and
Ewell
,
R.
, 1997, “
New Materials and Devices for Thermoelectric Applications
,”
Proceedings of the 32nd Intersociety Energy Conversion Engineering Conference
, Vol.
2
, pp.
1080
1085
.
41.
Gregory
,
O. J.
, and
Tao
,
Y.
, 2005, “
Ceramic Temperature Sensors for Harsh Environments
,”
IEEE Sensors J.
,
5
(
5
), pp.
833
838
.
42.
Ernst
,
H.
,
Muller
,
E.
, and
Kaysser
,
W. A.
, 2001, “
High Temperature Stable Contacts for Thermoelectric Sensors and Devices
,” XX International Conference on Thermoelectrics, pp.
521
524
.
43.
Kucukkomurler
,
A.
, 2009, “
Thermoelectric Powered High Temperature Wireless Sensing and Telemetry
,” 4th IEEE Conference on Industrial Electronics and Applications, pp.
1080
1086
.
44.
Information available online: http://www.indium.com/products/fusiblealloys.php. Last accessed April 2010.
45.
Wang
,
W.
, and
Qiu
,
H.-H.
, 2002 “
Interfacial Thermal Conductance in Rapid Contact Solidification Process
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2043
2053
.
46.
Information available online: http://lairdtech.thomasnet.com/item/thermoelectric-modules-2/thermatec-trade-series-thermoelectric-coolers/pn-4089?&seo=110&bc=100|3001624|3001688|3001253. Last accessed 17th April 2010.
47.
Simons
,
R. E.
,
Ellsworth
,
M. J.
, and
Chu
,
R. C.
, 2005, “
An Assessment of Module Cooling Enhancement With Thermoelectric Coolers
,”
ASME J. Heat Transfer
,
127
, pp.
76
84
.
48.
Gordon
,
J. M.
,
Ng
,
K. C.
,
Chua
,
H. T.
, and
Chakraborty
,
A.
, 2002, “
The Electro-Adsorption Chiller: A Miniaturized Cooling Cycle With Applications to Micro-Electronics
,”
Int. J. Refrig.
,
25
, pp.
1025
1033
.
49.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
Fundamentals of Heat and Mass Transfer
, 4th ed.,
John Wiley and Sons
,
New York
, ISBN: 0-471-30460-3
50.
Phillips
,
R. J.
, 1998, “
Microchannel Heat Sinks
,”
Lincoln Lab. J.
,
1
, pp.
31
48
.
51.
Kayansayan
,
N.
, and
Karabacak
,
R.
, 1992, “
Natural Convection Heat Transfer Coefficients for a Horizontal Cylinder With Vertically Attached Circular Fins
,”
Heat Recovery Syst. CHP
,
12
(
6
), pp.
457
468
.
52.
McLinden
,
M. O.
,
Klein
,
S.
,
Lemmon
,
E.
, and
Peskin
,
A.
, 1998, “
NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP)
,”
Version 6.0. National Institute of Standards and Technology
,
Gaithersburg, Maryland
.
53.
Holman
,
J. P.
,
Experimental Methods for Engineers
, 7th ed.,
Mc-Graw Hill series in Mechanical Engineering.
ISBN: 0-07-366055-8.
You do not currently have access to this content.