Boiling water in small channels that are formed along turbine blades has been examined since the 1970s as a means to dissipating large amounts of heat. Later, similar geometries could be found in cooling systems for computers, fusion reactors, rocket nozzles, avionics, hybrid vehicle power electronics, and space systems. This paper addresses (a) the implementation of two-phase microchannel heat sinks in these applications, (b) the fluid physics and limitations of boiling in small passages, and effective tools for predicting the thermal performance of heat sinks, and (c) means to enhance this performance. It is shown that despite many hundreds of publications attempting to predict the performance of two-phase microchannel heat sinks, there are only a handful of predictive tools that can tackle broad ranges of geometrical and operating parameters or different fluids. Development of these tools is complicated by a lack of reliable databases and the drastic differences in boiling behavior of different fluids in small passages. For example, flow boiling of certain fluids in very small diameter channels may be no different than in macrochannels. Conversely, other fluids may exhibit considerable “confinement” even in seemingly large diameter channels. It is shown that cutting-edge heat transfer enhancement techniques, such as the use of nanofluids and carbon nanotube coatings, with proven merits to single-phase macrosystems, may not offer similar advantages to microchannel heat sinks. Better performance may be achieved by careful optimization of the heat sink’s geometrical parameters and by adapting a new class of hybrid cooling schemes that combine the benefits of microchannel flow with those of jet impingement.

References

References
1.
Mudawar
,
I.
, 2001, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
24
, pp.
122
141
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electronic Devices Lett.
,
2
, pp.
126
129
.
3.
Kishimito
,
T.
, and
Ohsaki
,
T.
, 1986, “
VLSI Packaging Technique Using Liquid-Cooled Channels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
9
, pp.
328
335
.
4.
Phillips
,
R. J.
, 1990, “
Micro-Channel Heat Sinks
,”
Advances in Thermal Modeling of Electronic Components
,
A.
Bar-Cohen
and
A. D.
Kraus
, eds.,
ASME
,
New York, NY.
, Vol.
2
, pp.
109
184
.
5.
Copeland
,
D.
,
Takahira
,
H.
,
Nakayama
,
W.
, and
Pak
,
B. C.
, 1995, “
Manifold Microchannel Heat Sinks: Theory and Experiment
,”
Advances in Electronic Packaging, EEP-Vol. 10
,
ASME
, pp.
829
835
.
6.
Choquette
,
S. F.
,
Faghri
,
M.
,
Charmchi
,
M.
, and
Asako
,
Y.
, 1996, “
Optimum Design of Microchannel Heat Sinks
,”
Micro-Electro-Mechanical Syst.ems (MEMS)
, DSC-Vol. 59,
ASME
, pp.
115
126
.
7.
Yin
,
X.
, and
Bau
,
H. H.
, 1997, “
Uniform Channel Micro Heat Exchangers
,”
ASME J. Electron. Packag.
,
119
, pp.
89
93
.
8.
Kawano
,
K.
,
Minakami
,
K.
,
Iwasaki
,
H.
, and
Ishizuka
,
M.
, 1998, “
Micro Channel Heat Exchanger for Cooling Electrical Equipment
,”
Application of Heat Transfer in Equipment, Systems and Education, HTD-Vol. 361-3/PID-Vol. 3
,
ASME
, pp.
173
180
.
9.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Comparative Analysis of Jet Impingement and Microchannel Cooling for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1555
1568
.
10.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
, pp.
399
415
.
11.
Qu
,
W.
, and
Mudawar
,
I.
, 2000, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
, pp.
2549
2565
.
12.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3973
3985
.
13.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
37
, pp.
321
332
.
14.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sinks—Part 1. Design Criteria and Heat Diffusion Constraints
,”
ASME J. Electron. Packag.
,
116
, pp.
290
297
.
15.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
Two-Phase Electronic Cooling Using Mini-Channel and Micro-Channel Heat Sinks—Part 2. Flow Rate and Pressure Drop Constraints
,”
ASME J. Electron. Packag.
,
116
, pp.
298
305
.
16.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
,
126
, pp.
213
224
.
17.
Wallis
,
G. B.
, 1969,
One Dimensional Two-Phase Flow
,
2nd ed.
,
McGraw-Hill
,
New York, NY
.
18.
Koskie
,
J. E.
,
Mudawar
,
I.
, and
Tiederman
,
W. G.
, 1989, “
Parallel-Wire Probes for Measurement of Thick Liquid Films
,”
Int. J. Multiphase Flow
, pp.
521
530
.
19.
El-Masri
,
M. A.
, and
Louis
,
J. F.
, 1978, “
On the Design of High-Temperature Gas Turbine Blade Water Cooling Channels
,”
ASME J. Eng. Power
,
100
, pp.
586
591
.
20.
Kydd
,
P. H.
, and
Day
,
W. H.
, 1975, “
An Ultra High Temperature Turbine for Maximum Performance and Fuels Flexibility
,” ASME Paper No. 75-GT-81.
21.
Caruvana
,
A.
,
Manning
,
G. B.
,
Day
,
W. H.
, and
Sheldon
,
R. C.
, 1978, “
Evaluation of a Water-Cooled Gas Turbine Combined Cycle Plant
,” ASME Paper No. 78-GT-77.
22.
Mudawar
,
I.
, and
El-Masri
,
M. A.
, 1984, “
Thermal Design Constraints in Open Loop Water-Cooled Turbine Blades
,” ASME Paper No. 84-WA/HT-68.
23.
Mudawar
,
I.
,
El-Masri
,
M. A.
,
Wu
,
C. S.
, and
Ausman-Mudawar
,
J. R.
, 1985, “
Boiling Heat Transfer and Critical Heat Flux in High-Speed Rotating Liquid Films
,”
Int. J. Heat Mass Transfer
,
28
, pp.
795
806
.
24.
Mudawar
,
I.
, and
El-Masri
,
M. A.
, 1988, “
Boiling Incipience in Plane Rotating Water Films
,”
ASME J. Heat Transfer
,
110
, pp.
532
535
.
25.
The European Joint Undertaking for ITER and Development of Fusion Energy, 2008, “
Fusion for Energy
,” Annual Report, Barcelona, Spain.
26.
Boyd
,
R. D.
, 1985, “
Subcooled Flow Boiling Critical Heat Flux (CHF) and Its Application to Fusion Energy Components—Part I. A Review of Fundamentals of CHF and related Data Base
,”
Fusion Technol.
,
7
, pp.
7
31
.
27.
Mudawar
,
I.
, and
Bowers
,
M. B.
, 1999, “
Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling—I. CHF Data and Parametric Effects for Small Diameter Tubes
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1405
1428
.
28.
Ornatskii
,
A. P.
, and
Vinyarskii
,
L. S.
, 1965, “
Heat Transfer Crisis in a Forced Flow of Underheated Water in Small-Bore Tubes
,”
Teplofizika Vys. Temp.
,
3
, pp.
444
451
(Also in High Temperature, 3, pp. 400–406).
29.
Hall
,
D. D.
, and
Mudawar
,
I.
, 1999, “
Ultra-High Critical Heat Flux (CHF) for Subcooled Water Flow Boiling—II. High-CHF Database and Design Parameters
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1429
1456
.
30.
Wang
,
Q.
,
Wu
,
F.
,
Zeng
,
M.
, and
Luo
,
L.
, 2006, “
Numerical Simulation and Optimization on Heat Transfer and Fluid Flow of Liquid Rocket Engine Thrust Chamber
,”
Int. J. Comput.-Aided Eng. Softw.
,
23
, pp.
907
921
.
31.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 2002,
Fundamentals of Heat and Mass Transfer
,
5th ed.
,
Wiley
,
New York, NY
.
32.
Wadel
,
M. F.
, 1998, “
Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber With Development of an Optimized Design
,” Cleveland, OH, NASA Technical Report No. TM-1998-206313.
33.
Gambill
,
W. R.
, and
Green
,
N. D.
, 1958, “
Boiling Burnout With Water in Vortex Flow
,”
Chem. Eng. Prog.
,
54
, pp.
68
76
.
34.
Gu
,
C. B.
,
Chow
,
L. C.
, and
Beam
,
J. E.
, 1989, “
Flow Boiling in a Curved Channel
,”
Heat Transfer in High Energy/High Heat Flux Applications
,
R. J.
Goldstein
,
L. C.
Chow
, and
E. E.
Anderson
, eds.,
ASME
,
HTD
, Vol.
119
, pp.
25
32
.
35.
Zuber
,
N.
,
Tribus
,
M.
, and
Westwater
,
J. M.
, 1961, “
The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids
,”
Proceedings of the 1961-62 International Heat Transfer Conference
,
Boulder
,
CO
, pp.
230
236
.
36.
Sturgis
,
J. C.
, and
Mudawar
,
I.
, 1999, “
Critical Heat Flux in a Long, Curved Channel Subjected to Concave Heating
,”
Int. J. Heat Mass Transfer
,
42
, pp.
3831
3848
.
37.
Sturgis
,
J. C.
, and
Mudawar
,
I.
, 1999, “
Assessment of CHF Enhancement Mechanisms in a Curved, Rectangular Channel Subjected to Concave Heating
,”
ASME J. Heat Transfer
,
121
, pp.
394
404
.
38.
Mudawar
,
I.
,
Howard
,
A. H.
, and
Gersey
,
C. O.
, 1997, “
An Analytical Model for Near-Saturated Pool Boiling CHF on Vertical Surfaces
,”
Int. J. Heat Mass Transfer
,
40
, pp.
2327
2339
.
39.
Howard
,
A. H.
, and
Mudawar
,
I.
, 1999, “
Orientation Effects on Pool Boiling CHF and Modeling of CHF for Near-Vertical Surfaces
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1665
1688
.
40.
Galloway
,
J. E.
, and
Mudawar
,
I.
, 1993, “
CHF Mechanism in Flow Boiling From a Short Heated Wall-Part 1. Examination of Near-Wall Conditions With the Aid of Photomicrography and High-Speed Video Imaging
,”
Int. J. Heat Mass Transfer
,
36
, pp.
2511
2526
.
41.
Galloway
,
J. E.
, and
Mudawar
,
I.
, 1993, “
CHF Mechanism in Flow Boiling From a Short Heated Wall-Part 2. Theoretical CHF Model
,”
Int. J. Heat Mass Transfer
,
36
, pp.
2527
2540
.
42.
Sturgis
,
J. C.
, and
Mudawar
,
I.
, 1999, “
Critical Heat Flux in a Long, Rectangular Channel Subjected to One-Sided Heating—I. Flow Visualization
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1835
1847
.
43.
Sturgis
,
J. C.
, and
Mudawar
,
I.
, 1999, “
Critical Heat Flux in a Long, Rectangular Channel Subjected to One-Sided Heating—II. Analysis of CHF Data
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1849
1862
.
44.
Barwick
,
M.
,
Midkoff
,
M.
, and
Seals
,
D.
, 1991, “
Liquid Flow-Through Cooling for Avionics Applications
,”
Proceedings of the IEEE 1991 National Aerospace and Electronics Conference (NAECON)
,
Dayton
,
OH
, Vol. 1, pp.
227
230
.
45.
Mudawar
,
I.
,
Jimenez
,
P. E.
, and
Morgan
,
R. E.
, 1994, “
Immersion-Cooled Standard Electronic Clamshell Module: A Building Block for Future High-Flux Avionics Systems
,”
ASME J. Electron. Packag.
,
116
, pp.
116
125
.
46.
Jimenez
,
P. E.
, and
Mudawar
,
I.
, 1994, “
A Multi-Kilowatt Immersion-Cooled Standard Electronic Clamshell Module for Future Aircraft Avionics
,”
ASME J. Electron. Packag.
,
116
, pp.
220
229
.
47.
Electrical and Electronics Technical Team, 2006, “
Electrical and Electronics Technical Team Roadmap
,”
U.S. Department of Energy
,
Washington, D.C.
48.
Mudawar
,
I.
,
Bharathan
,
D.
,
Kelly
,
K.
, and
Narumanchi
,
S.
, 2009, “
Two-Phase Spray Cooling of Hybrid Vehicle Electronics
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
32
, pp.
501
512
.
49.
Mori
,
D.
, and
Hirose
,
K.
, 2009, “
Recent Challenges of Hydrogen Storage Technologies for Fuel Cell Vehicles
,”
Int. J. Hydrogen Energy
,
34
, pp.
4569
4575
.
50.
Visaria
,
M.
,
Mudawar
,
I.
,
Pourpoint
,
T.
, and
Kumar
,
S.
, 2010, “
Study of Heat Transfer and Kinetics Parameters Influencing the Design of Heat Exchangers for Hydrogen Storage in High-Pressure Metal Hydrides
,”
Int. J. Heat Mass Transfer
,
53
, pp.
2229
2239
.
51.
Visaria
,
M.
,
Mudawar
,
I.
, and
Pourpoint
,
T.
, 2001, “
Enhanced Heat Exchanger Design for Hydrogen Storage Using High-Pressure Metal Hydride—Part 1. Design Methodology and Computational Results
,”
Int. J. Heat Mass Transfer
,
54
, pp.
413
423
.
52.
Visaria
,
M.
,
Mudawar
,
I.
, and
Pourpoint
,
T.
, 2001, “
Enhanced Heat Exchanger Design for Hydrogen Storage Using High-Pressure Metal Hydride—Part 2. Experimental Methods
,”
Int. J. Heat Mass Transfer
,
54
, pp.
424
432
.
53.
Mudawar
,
I.
, 2009, “
Micro-Channel Heat Exchangers for Metal Hydride Hydrogen Storage Systems
,” U.S. Provisional Patent Application No. 61/184,595.
54.
Kirschman
,
R. K.
, 1985, “
Cold Electronics: An Overview
,”
Cryogenics
,
25
, pp.
115
122
.
55.
Phelan
,
P. E.
,
Chiriac
,
V. A.
, and
Lee
,
T. -Y. T. T.
, 2002, “
Current and Future Miniature Refrigeration Cooling Technologies for High Power Microelectronics
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
25
, pp.
356
365
.
56.
Peeples
,
J. W.
,
Little
,
W.
,
Schmidt
,
R.
, and
Nisenoff
,
M.
, 2000, “
Low Temperature Electronics Workshop
,”
Proceedings of the 16th Semiconductor Thermal Measurement and Management Symposium
,
San Jose
,
CA
, pp.
108
109
.
57.
Schmidt
,
R. R.
, and
Notohardjono
,
B. D.
, 2002, “
High-End Server Low-Temperature Cooling
,”
IBM J. Res. Dev.
,
46
, pp.
739
751
.
58.
Chiriac
,
V.
, and
Chiriac
,
F.
, 2006, “
The Optimization of a Refrigerant Vapor Compression System for Power Microelectronics
,”
Proceedings of the ITherm 2006
,
San Diego
,
CA
, pp.
759
764
.
59.
Wadell
,
R.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
, 2007, “
Experimental Investigation of Compact Evaporators for Ultralow Temperature Refrigeration of Microprocessors
,”
ASME J. Electron. Packag.
,
129
, pp.
291
299
.
60.
Tran
,
T. N.
,
Chyu
,
M.-C.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
, 2000, “
Two-Phase Pressure Drop of Refrigerants During Flow Boiling in Small Channels: An Experimental Investigation and Correlation Development
,”
Int. J. Multiphase Flow
,
26
, pp.
1739
1754
.
61.
Lee
,
H. J.
, and
Lee
,
S. Y.
, 2001, “
Pressure Drop Correlations for Two-Phase Flow Within Horizontal Rectangular Channels With Small Heights
,”
Int. J. Multiphase Flow
,
27
, pp.
783
796
.
62.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2755
2771
.
63.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks—II. Annular Two-Phase Flow Model
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2773
2784
.
64.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part I—Pressure Drop Characteristics
,”
Int. J. Heat Mass Transfer
,
48
, pp.
928
940
.
65.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II—Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
48
, pp.
928
940
.
66.
Lee
,
J.
, and
Mudawar
,
I.
, 2008, “
Fluid Flow and Heat Transfer Characteristics of Low Temperature Two-Phase Micro-Channel Heat Sinks—Part 1: Experimental Methods and Flow Visualization Results
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4315
4326
.
67.
Lee
,
J.
, and
Mudawar
,
I.
, 2008, “
Fluid Flow and Heat Transfer Characteristics of Low temperature Two-Phase Micro-Channel Heat Sinks—Part 2: Subcooled Boiling Pressure Drop and Heat Transfer
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4327
4341
.
68.
Lee
,
J.
, and
Mudawar
,
I.
, 2009, “
Critical Heat Flux for Subcooled Flow Boiling in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3341
3352
.
69.
Lee
,
J.
, and
Mudawar
,
I.
, 2009, “
Experimental Investigation and Theoretical Model for Subcooled Flow Boiling Pressure Drop in Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
,
131
,
031008
.
70.
Lee
,
J.
, and
Mudawar
,
I.
, 2009, “
Low-Temperature Two-Phase Micro-Channel Cooling for High-Heat-Flux Thermal Management of Defense Electronics
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
32
, pp.
453
465
.
71.
Chiaramonte
,
F. P.
, and
Joshi
,
J. A.
, 2004, “
Workshop on Critical Issues in Microgravity Fluids, Transport, and Reaction Processes in Advanced Human Support Technology—Final Report
,” Report No. NASA TM-2004-212940.
72.
Zhang
,
H. I.
,
Mudawar
,
I.
, and
Hasan
,
M. M.
, 2005, “
Flow Boiling CHF in Microgravity
,”
Int. J. Heat Mass Transfer
,
48
, pp.
3107
3118
.
73.
Saito
,
M.
,
Yamaoka
,
N.
,
Miyazaki
,
K.
,
Kinoshita
,
M.
, and
Abe
,
Y.
, 1994, “
Boiling Two-Phase Flow Under Microgravity
,”
Nucl. Eng. Des.
,
146
, pp.
451
461
.
74.
Cochran
,
T. H.
, 1970, “
Forced-Convection Boiling Near Inception in Zero-Gravity
,” NASA Technical Note D-5612.
75.
Ma
,
Y.
, and
Chung
,
J. N.
, 2001, “
An Experimental Study of Critical Heat Flux (CHF) in Microgravity Forced-Convection Boiling
,”
Int. J. Multiphase Flow
,
27
, pp.
1753
1767
.
76.
Zhang
,
H.
,
Mudawar
,
I.
, and
Hasan
,
M. M.
, 2007, “
Assessment of Dimensionless CHF Correlations for Subcooled Flow Boiling in Microgravity and Earth Gravity
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4568
4580
.
77.
Zhang
,
H.
,
Mudawar
,
I.
, and
Hasan
,
M. M.
, 2004, “
A Method for Assessing the Importance of Body Force on Flow Boiling CHF
,”
ASME J. Heat Transfer
,
126
, pp.
161
168
.
78.
Zhang
,
H.
,
Mudawar
,
I.
, and
Hasan
,
M. M.
, 2009, “
Application of Flow Boiling for Thermal Management of Electronics in Microgravity and Reduced Gravity Systems
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
32
, pp.
466
477
.
79.
Ku
,
J.
, 1993, “
Overview of Capillary Pumped Loop Technology
,”
Proceedings of the 29th National Heat Transfer Conference
,
ASME
,
Atlanta
, GA, HTD-Vol. 236, pp.
1
17
.
80.
LaClair
,
T. J.
, and
Mudawar
,
I.
, 2000, “
Thermal Transients in a Capillary Evaporator Prior to the Initiation of Boiling
,”
Int. J. Heat Mass Transfer
,
43
, pp.
3937
3952
.
81.
Cullimore
,
B. A.
, 1991, “
Start Up Transients in Capillary Pumped Loops
,” AIAA Paper No. 91-1374, Reston, VA.
82.
LaClair
,
T. J.
, and
Mudawar
,
I.
, 2009, “
Theoretical Model for Fast Bubble Growth in Small Channels With Reference to Startup of Capillary Pumped Loops Used in Spacecraft Thermal Management Systems
,”
Int. J. Heat Mass Transfer
,
52
, pp.
716
723
.
83.
Mala
,
G. M.
, and
Li
,
D.
, 1999, “
Flow Characteristics of Water in Microtubes
,”
Int. J. Heat Fluid Flow
,
20
, pp.
142
148
.
84.
Papautsky
,
I.
,
Brazzle
,
J.
,
Ameel
,
T.
, and
Frazier
,
A. B.
, 1999, “
Laminar Fluid Behavior in Microchannels Using Micropolar Fluid Theory
,”
Sens. Actuators, A
,
73
, pp.
101
108
.
85.
Choi
,
S. B.
,
Barron
,
R. R.
, and
Warrington
,
R. O.
, 1991, “
Fluid Flow and Heat Transfer in Micro Tubes
,” ASME DSC-40, pp.
89
93
.
86.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Wang
,
B. X.
, 1994, “
Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels
,”
Exp. Heat Transfer
,
7
, pp.
249
264
.
87.
Flockhart
,
S. M.
, and
Dhariwal
,
R. S.
, 1998, “
Experimental and Numerical Investigation Into the Flow Characteristics of Channels Etched in <100> Silicon
,”
ASME J. Fluids Eng.
,
120
, pp.
291
295
.
88.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
, 2002, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3477
3489
.
89.
Wu
,
H. Y.
, and
Cheng
,
D.
, 2003, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2519
2525
.
90.
Qu
,
W.
,
Mudawar
,
I.
,
Lee
,
S.-Y.
, and
Wereley
,
S. T.
, 2006, “
Experimental and Computational Investigation of Flow Development and Pressure Drop in a Rectangular Micro-Channel
,”
ASME J. Electron. Packag.
,
128
, pp.
1
9
.
91.
Gan
,
Y.
,
Xu
,
J.
, and
Wang
,
S.
, 2008, “
Are the Available Boiling Heat Transfer Coefficients Suitable for Silicon Microchannel Heat Sinks?
,”
Microfluids Nanofluids
,
4
, pp.
575
587
.
92.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
, 2006, “
Periodic Boiling in Parallel Micro-Channels at Low Vapor Quality
,”
Int. J. Multiphase Flow
,
32
, pp.
1141
1159
.
93.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A. E.
, 2008, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
,
2267
2281
.
94.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2004, “
Boiling Instability in Parallel Silicon Microchannels at Different Heat Flux
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3631
3641
.
95.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 1999, “
Phase Change in Microchannel Heat Sinks With Integrated Temperature Sensors
,”
J. Microelectromech. Syst.
,
8
, pp.
358
365
.
96.
Cortés
,
C.
,
Diez
,
L. I.
, and
Campo
,
A.
, 2008, “
Efficiency of Composite Fins of Variable Thickness
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2153
2166
.
97.
Kim
,
S. M.
, and
Mudawar
,
I.
, 2010, “
Analytical Heat Diffusion Models for Different Micro-Channel Heat Sink Cross-Sectional Geometries
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4001
4016
.
98.
Kim
,
S. M.
, and
Mudawar
,
I.
, 2010, “
Analytical Heat Diffusion Models for Heat Sinks With Circular Micro-Channels
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4552
4566
.
99.
Thome
,
J. R.
, 2004, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Heat Fluid Flow
,
25
, pp.
128
139
.
100.
Liao
,
S.-J.
, 2002, “
An Analytic Approximation of the Drag Coefficient for the Viscous Flow Past a Sphere
,”
Int. J. Non-Linear Mech.
,
37
, pp.
1
18
.
101.
Sato
,
T.
, and
Matsumura
,
H.
, 1963, “
On the Conditions of Incipient Subcooled Boiling and Forced-Convection
,”
Bull. JSME
,
7
, pp.
392
398
.
102.
Davis
,
E. J.
, and
Anderson
,
G. H.
, 1966, “
The Incipience of Nucleate Boiling in Forced Convection Flow
,”
AIChE J.
,
12
, pp.
774
780
.
103.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Prediction and Measurement of Incipient Boiling Heat Flux in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3933
3945
.
104.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Thermal Design Methodology for High-Heat-Flux Single-Phase and Two-Phase Micro-Channel Heat Sinks
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
26
, pp.
598
609
.
105.
Al-Hayes
,
R. A. M.
, and
Winterton
,
R. H. S.
, 1981, “
Bubble Diameter in Detachment in Flowing Liquids
,”
Int. J. Heat Mass Transfer
,
24
, pp.
223
230
.
106.
Winterton
,
R. H. S.
, 1984, “
Flow Boiling: Prediction of Bubble Departure
,”
Int. J. Heat Mass Transfer
,
27
, pp.
1422
1424
.
107.
Willingham
,
T. C.
, and
Mudawar
,
I.
, 1992, “
Channel Height Effects on Forced-Convection Boiling and Critical Heat Flux From a Linear Array of Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
,
35
, pp.
1865
1880
.
108.
Willingham
,
T. C.
, and
Mudawar
,
I.
, 1992, “
Forced-Convection Boiling and Critical Heat Flux From a Linear Array of Discrete Heat Sources
,”
Int. J. Heat Mass Transfer
,
35
, pp.
2879
2890
.
109.
Hosler
,
E. R.
, 1968, “
Flow Patterns in High Pressure Two-Phase (Stream-Water) Flow With Heat Addition
,”
AIChE Symp. Ser.
,
64
, pp.
54
66
.
110.
Wambsganss
,
M. W.
,
Jendrzejczyk
,
J. A.
, and
France
,
D. M.
, 1991, “
Two-Phase Flow Patterns and Transition in a Small, Horizontal, Rectangular Channel
,”
Int. J. Multiphase Flow
,
17
, pp.
327
342
.
111.
Ali
,
M. I.
, and
Kawaji
,
M.
, 1991, “
The Effect of Flow Channel Orientation on Two-Phase Flow in a Narrow Passage Between Flat Plates
,”
Proceedings of the 1991 ASME/JSME Thermal Engineering Joint Conference
,
J. R.
Lloyd
and
Y.
Kurosaki
, eds.,
ASME
,
New York, NY
, Vol.
2
, pp.
183
190
.
112.
Mishima
,
K.
,
Hibiki
,
T.
, and
Nishihara
,
H.
, 1993, “
Some Characteristics of Gas-Liquid Flow in Narrow Rectangular Ducts
,”
Int. J. Multiphase Flow
,
19
, pp.
115
124
.
113.
Fujita
,
H.
,
Ohara
,
T.
,
Hirota
,
M.
, and
Furuta
,
H.
, 1995, “
Gas-Liquid Flows in Flat Channels With Small Channel Clearance
,”
Advances in Multiphase Flow
,
A.
Serizawa
,
T.
Fukano
, and
J.
Bataille
, eds.,
Elsevier
,
New York, NY
, pp.
441
451
.
114.
Xu
,
J. L.
,
Cheng
,
P.
, and
Zhao
,
T. S.
, 1999, “
Gas-Liquid Two-Phase Flow Regimes in Rectangular Channels With Mini/Micro Gaps
,”
Int. J. Multiphase Flow
,
25
, pp.
411
432
.
115.
Qu
,
W.
,
Yoon
,
S.-M.
, and
Mudawar
,
I.
, 2004, “
Two-Phase Flow and Heat Transfer in Rectangular Micro-Channels
,”
ASME J. Electron. Packag.
,
126
, pp.
288
300
.
116.
Mandhane
,
J. M.
,
Gregory
,
G. A.
, and
Aziz
,
K.
, 1974, “
A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pips
,”
Int. J. Multiphase Flow
,
1
, pp.
537
553
.
117.
Taitel
,
Y.
, and
Dukler
,
A. E.
, 1976, “
A Model for Predicting Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow
,”
AIChE J.
,
22
, pp.
47
55
.
118.
Bergles
,
A. E.
, 1977, “
Review of Instability in Two-Phase Systems
,”
Two-Phase Flows and Heat Transfer
,
S.
Kakac
, and
F.
Mayinger
, eds.,
Hemisphere
,
Washington
, Vol.
1
, pp.
383
422
.
119.
Yadigaroglu
,
G.
, 1981, “
Two-Phase Flow Instabilities and Propagation Phenomena
,”
Thermohydraulics of Two-Phase Systems for Industrial Design and Nuclear Engineering
,
J. M.
Delhaye
,
M.
Giot
, and
M. L.
Riethmuller
, eds.,
Hemisphere
,
Washington
, pp.
353
403
.
120.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2737
2753
.
121.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data, Supplement 1
,
Academic
,
New York, NY
.
122.
Lee
,
J.
, 2008, “
Investigation of Subcooled Boiling in Micro-Channel Heat Sink for Indirect Refrigeration Cooling Applications
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
123.
McAdams
,
W. H.
,
Woods
,
W. K.
, and
Heroman
,
L. C.
, 1942, “
Vaporization Inside Horizontal Tubes, II. Benzene-Oil Mixture
,”
Trans. ASME
,
64
, pp.
193
200
.
124.
Davidson
,
W. F.
,
Hardie
,
P. H.
,
Humphreys
,
C. G. R.
,
Markson
,
A. A.
,
Mumford
,
A. R.
, and
Ravese
,
T.
, 1943, “
Studies of Heat Transmission Through Boiler Tubing at Pressures From 500 to 3300 Pounds
,”
Trans. ASME
,
65
, pp.
553
591
.
125.
Cicchitti
,
A.
,
Lombardi
,
C.
,
Silvestri
,
M.
,
Soldaini
,
G.
, and
Zavalluilli
,
R.
, 1960, “
Two-Phase Cooling Experiments-Pressure Drop, Heat Transfer and Burnout Measurements
,”
Energ. Nucl.
,
7
, pp.
407
425
.
126.
Owens
,
W. L.
, 1961, “
Two-Phase Pressure Gradient
,”
Int. Dev. Heat Transfer
, Part II,
ASME
, pp.
363
368
.
127.
Dukler
,
A. E.
,
Wicks
,
M.
, and
Cleaveland
,
R. G.
, 1964, “
Pressure Drop and Hold Up in Two-Phase Flow
,”
AIChE J.
,
10
, pp.
38
51
.
128.
Zivi
,
S. M.
, 1964, “
Estimation of Steady-State Steam Void-Fraction by Means of the Principle of Minimum Entropy Production
,”
ASME J. Heat Transfer
,
86
, pp.
247
252
.
129.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
, pp.
39
48
.
130.
Mishima
,
K.
, and
Hibiki
,
T.
, 1996, “
Some Characteristics of Air–Water Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiphase Flow
,
22
, pp.
703
712
.
131.
Blevins
,
R. D.
, 1984,
Applied Fluid Dynamics Handbook
,
Van Nostrand Reinhold
,
New York, NY
.
132.
Collier
,
J. G.
, and
Thome
,
J. R.
, 1994,
Convective Boiling and Condensation
,
3rd ed.
,
Oxford University Press
,
New York, NY
.
133.
Copeland
,
D.
, 1995, “
Manifold Microchannel Heat Sinks: Analysis and Optimization
,”
Therm. Sci. Eng.
,
3
, pp.
7
12
.
134.
Al-Arabi
,
M.
, 1982, “
Turbulent Heat Transfer in the Entrance Region of a Tube
,”
Heat Transfer Eng.
,
3
, pp.
76
83
.
135.
Chen
,
J. C.
, 1966, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
I&EC Process Des. Dev.
,
5
, pp.
322
329
.
136.
Shah
,
M. M.
, 1982, “
Chart Correlation for Saturated Boiling Heat Transfer: Equation and Further Study
,”
ASHRAE Trans.
,
88
, pp.
185
196
.
137.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
, 1986, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
, pp.
351
358
.
138.
Kandlikar
,
S. G.
, 1990, “
A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer Inside Horizontal and Vertical Tubes
,”
ASME J. Heat Transfer
,
112
, pp.
219
228
.
139.
Liu
,
Z.
, and
Winterton
,
R. H. S.
, 1991, “
A General Correlation for Saturated and Subcooled Flow Boiling in Tube and Annuli
,”
Int. J. Heat Mass Transfer
,
34
, pp.
2759
2766
.
140.
Steiner
,
D.
, and
Taborek
,
J.
, 1992, “
Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model
,”
Heat Transfer Eng.
,
13
, pp.
43
69
.
141.
Lazarek
,
G. M.
, and
Black
,
S. H.
, 1982, “
Evaporative Heat Transfer, Pressure Drop and Critical Heat Flux in a Small Vertical Tube With R-113
,”
Int. J. Heat Mass Transfer
,
25
, pp.
945
959
.
142.
Tran
,
T. N.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
, 1996, “
Small Circular- and Rectangular-Channel Boiling With Two Refrigerants
,”
Int. J. Multiphase Flow
,
22
, pp.
485
498
.
143.
Lee
,
H. J.
, and
Lee
,
S. Y.
, 2001, “
Heat Transfer Correlation for Boiling Flows in Small Rectangular Horizontal Channels With Low Aspect Ratios
,”
Int. J. Multiphase Flow
,
27
, pp.
2043
2062
.
144.
Yu
,
W.
,
France
,
D. M.
,
Wambsganss
,
M. W.
, and
Hull
,
J. R.
, 2002, “
Two-Phase Pressure Drop, Boiling Heat Transfer, and Critical Heat Flux to Water in a Small-Diameter Horizontal Tube
,”
Int. J. Multiphase Flow
,
28
, pp.
927
941
.
145.
Warrier
,
G. R.
,
Dhir
,
V. K.
, and
Momoda
,
L. A.
, 2002, “
Heat Transfer and Pressure Drop in Narrow Rectangular Channels
,”
Exp. Therm. Fluid Sci.
,
26
, pp.
53
64
.
146.
Katto
,
Y.
, and
Ohno
,
H.
, 1984, “
An Improved Version of the Generalized Correlation of Critical Heat Flux for the Forced Convective Boiling in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
, pp.
1641
1648
.
147.
Hall
,
D. D.
, and
Mudawar
,
I.
, 2000, “
Critical Heat Flux (CHF) for Water Flow in Tubes—I. Compilation and Assessment of World CHF Data
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2573
2604
.
148.
Hall
,
D. D.
, and
Mudawar
,
I.
, 2000, “
Critical Heat Flux (CHF) for Water Flow in Tubes-II. Subcooled CHF Correlations
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2605
2640
.
149.
Qu
,
W.
, and
Mudawar
,
I.
, 2005, “
A Systematic Method for Optimal Design of Two-Phase Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
,
127
, pp.
381
390
.
150.
Lee
,
J.
, and
Mudawar
,
I.
, 2006, “
Implementation of Micro-Channel Evaporator for High-Heat-Flux Refrigeration Cooling Applications
,”
ASME J. Electron. Packag.
,
128
, pp.
30
37
.
151.
Choi
,
S. U. S.
, 1995, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
,
New York, NY
, FED-Vol. 231/MD-Vol. 66, pp.
99
105
.
152.
Lee
,
S.
,
Choi
,
S. U. -S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
, pp.
280
289
.
153.
Xue
,
Q.-Z.
, 2003, “
Model for Effective Thermal Conductivity of Nanofluids
,”
Phys. Lett. A
,
307
, pp.
313
317
.
154.
Lee
,
J.
, and
Mudawar
,
I.
, 2007, “
Assessment of the Effectiveness of Nanofluids for Single-Phase and Two-Phase Heat Transfer in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
50
, pp.
452
463
.
155.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001, “
Thermal Transport Measurements of Individual Multiwalled Nanotubes
,”
Phys. Rev. Lett.
,
87
, pp.
1
4
.
156.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
, 2007, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
, pp.
4023
4038
.
157.
Launay
,
S.
,
Fedorov
,
A. G.
,
Joshi
,
Y.
,
Cao
,
A.
, and
Ajayan
,
P. M.
, 2006, “
Hybrid Micro-Nano Structured Thermal Interfaces for Pool Boiling Heat Transfer Enhancement
,”
Microelectron. J.
,
37
, pp.
1158
1164
.
158.
Khanikar
,
V.
,
Mudawar
,
I.
, and
Fisher
,
T.
, 2009, “
Effects of Carbon Nanotube Coating on Flow Boiling in a Micro-Channel
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3805
3817
.
159.
Anderson
T. M.
, and
Mudawar
,
I.
, 1989, “
Microelectronic Cooling by Enhanced Pool Boiling of a Dielectric Fluorocarbon Liquid
,”
ASME J. Heat Transfer
,
111
, pp.
752
759
.
160.
Mukherjee
,
S.
, and
Mudawar
,
I.
, 2003, “
Smart, Low-Cost, Pumpless Loop for Micro-Channel Electronic Cooling Using Flat and Enhanced Surfaces
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
26
, pp.
99
109
.
161.
Mukherjee
,
S.
, and
Mudawar
,
I.
, 2003, “
Pumpless Loop for Narrow Channel and Micro-Channel Boiling From Vertical Surfaces
,”
ASME J. Electron. Packag.
,
125
, pp.
431
441
.
162.
Mudawar
,
I.
, and
Wadsworth
,
D. C.
, 1991, “
Critical Heat Flux From a Simulated Electronic Chip to a Confined Rectangular Impinging Jet of Dielectric Liquid
,”
Int. J. Heat Mass Transfer
,
34
, pp.
1465
1480
.
163.
Wadsworth
,
D. C.
, and
Mudawar
,
I.
, 1992, “
Enhancement of Single-Phase Heat Transfer and Critical Heat Flux From an Ultra-High-Flux Simulated Microelectronic Heat Source to a Rectangular Impinging Jet of Dielectric Liquid
,”
ASME J. Heat Transfer
,
114
, pp.
764
768
.
164.
Sung
,
M. K.
, and
Mudawar
,
I.
, 2008, “
Single-Phase and Two-Phase Cooling Using Hybrid Micro-Channel/Slot-Jet Module
,”
Int. J. Heat Mass Transfer
,
51
, pp.
3825
3839
.
165.
Sung
,
M. K.
, and
Mudawar
,
I.
, 2009, “
Effects of Jet Pattern on Two-Phase Cooling Performance of Hybrid Micro-Channel/Micro-Circular-Jet-Impingement Thermal Management Scheme
,”
Int. J. Heat Mass Transfer
,
52
, pp.
3364
3372
.
166.
Sung
,
M. K.
, and
Mudawar
,
I.
, 2009, “
CHF Determination for High-Heat-Flux Phase-Change Cooling System Incorporating Both Micro-Channel Flow and Jet-Impingement
,”
Int. J. Heat Mass Transfer
,
52
, pp.
610
619
.
167.
Sung
,
M. K.
, and
Mudawar
,
I.
, 2009, “
Single-Phase and Two-Phase Hybrid Cooling Scheme for High-Heat-Flux Thermal Management of Defense Electronics
,”
ASME J. Electron. Packag.
,
131
,
021013
.
168.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
, 2009, “
Multi-Objective Thermal Design Optimization and Comparative Analysis of Electronics Cooling Technologies
,”
Int. J. Heat Mass Transfer
,
52
, pp.
4317
4326
.
You do not currently have access to this content.