The present study examines the thermomechanical strain-rate sensitivity of eutectic 63Sn–37Pb solder over a broad range of strain-rates from 0.0002 s–1 to 200 s–1, thus encompassing failure events between 1 h and 1 ms, at temperatures ranging from −60 °C to + 100 °C. A newly developed servohydraulic tensile method enabled this broad range of strain-rates to be evaluated by a single technique, eliminating ambiguity caused by evaluation across multiple experimental methods. Two solder conditions were compared: a normalized condition representing a solder joint that has largely stabilized ∼30 days after solidification and an aged condition representing ∼30 years at near-ambient temperatures. The tensile behavior of both conditions exhibited dramatic temperature and strain-rate sensitivity. At 100 °C, the yield strength increased from 5 MPa at 0.0002 s–1 to 42 MPa at 200 s–1, while at −60 °C, the yield strength increased from 57 MPa at 0.0002 s–1 to 71 MPa at 200 s–1. The room temperature strain rate-dependent behavior was also measured for the lead free SAC396 alloy. The SAC alloy exhibited thermal strain-rate sensitivity similar to Sn–Pb over this temperature and strain-rate regime. Microstructural characterization using backscatter electron imaging and electron backscatter diffraction showed distinct, morphological changes of the microstructure for different thermomechanical conditions as well as some systematic changes in the crystallographic texture. However, very little intergranular rotation was observed over the range of thermomechanical conditions, suggesting the dominance of a grain boundary sliding (GBS) deformation mechanism. Finally, a recently developed unified-creep-plasticity constitutive model for solder deformation was found to describe the observed behavior with much higher fidelity than the common Johnson–Cook model.

References

References
1.
JEDEC Standard JESD22-B11, July 2003, “
Board Level Drop Test Method of Components for Handheld Electronic Products.
,”
2.
Frear
,
D. R.
, 2007, “
Issues Related to the Implementation of Pb-Free Electronic Solders in Consumer Electronics
,”
J. Mater. Sci.: Mater. Electron.
,
18
(
1–3
), pp.
319
330
.
3.
Wong
,
E. H.
,
Seah
,
S. K. W.
,
Van Driel
,
W. D.
,
Caers
,
J.
,
Owens
,
N.
, and
Lai
,
Y. S.
, 2009, “
Advances in the Drop-Impact Reliability of Solder Joints for Mobile Applications
,”
Microelectron. Reliab.
,
49
(
2
), pp.
139
149
.
4.
Plumbridge
,
W. J.
, and
Gagg
,
C. R.
, 1999, “
Effects of Strain Rate and Temperature on the Stress-Strain Response of Solder Alloys
,”
J. Mater. Sci.: Mater. Electron.
,
10
(
5/6
), pp.
461
468
.
5.
Andersson
,
C.
,
Sun
,
P.
, and
Liu
,
J.
, 2008, “
Tensile Properties and Microstructural Characterization of Sn-0.7Cu-0.4Co Bulk Solder Alloy for Electronics Applications
,”
J. Alloys Compd.
,
457
(
1–2
), pp.
97
105
.
6.
Kim
,
K. S.
,
Huh
,
S. H.
, and
Suganuma
,
K.
, 2002, “
Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys
,”
Mater. Sci. Eng., A
,
333
(
1–2
), pp.
106
114
.
7.
Nose
,
H.
,
Sakane
,
M.
,
Tsukada
,
Y.
, and
Nishimura
,
H.
, 2003, “
Temperature and Strain Rate Effects on Tensile Strength and Inelastic Constitutive Relationship of Sn-Pb Solders
,”
ASME J. Electron. Packag.
,
125
(
1
), pp.
59
66
.
8.
Shohji
,
I.
,
Yoshida
,
T.
,
Takahashi
,
T.
, and
Hioki
,
S.
, 2004, “
Tensile Properties of Sn-Ag Based Lead-Free Solders and Strain Rate Sensitivity
,”
Mater. Sci. Eng., A
,
366
(
1
), pp.
50
55
.
9.
Zhu
,
F. L.
,
Zhang
,
H. H.
,
Guan
,
R. F.
, and
Liu
,
S.
, 2007, “
The Effect of Temperature and Strain Rate on the Tensile Properties of a Sn99.3Cu0., 7(Ni) Lead-Free Solder Alloy
,”
Microelectron. Eng.
,
84
(
1
), pp.
144
150
.
10.
Bai
,
N.
,
Chen
,
X.
, and
Fang
,
Z.
, 2008, “
Effect of Strain Rate and Temperature on the Tensile Properties of Tin-Based Lead-Free Solder Alloys
,”
J. Electron. Mater.
,
37
(
7
), pp.
1012
1019
.
11.
Gilat
,
A.
, and
Krishna
,
K.
, 1997, “
The Effects of Strain Rate and Thickness an the Response of Thin Layers of Solder Loaded in Pure Shear
,”
ASME J. Electron. Packag.
,
119
(
2
), pp.
81
84
.
12.
Liu
,
J. F.
,
Shim
,
V. P. W.
,
Tan
,
V. B. C.
, and
Lee
,
T. K.
, 2007, “
Dynamic Testing of Solder Joint Strength under Compression, Tension and Shearing
,”
Proceeding of the 9th Electronics Packaging Technolgy Conference
, Dec. 10-12,
Singapore, Singapore
, pp.
380
385
.
13.
Niu
,
X. Y.
,
Yuan
,
G. Z.
,
Li
,
Z. G.
, and
Shu
,
X. F.
, 2008, “
Study on Dynamic Failure Model of Lead-Free Solders Using Shpb Techniques
,”
Int. J. Mod. Phys. B
,
22
(
9-11
), pp.
1117
1122
.
14.
Siviour
,
C. R.
,
Walley
,
S. M.
,
Proud
,
W. G.
, and
Field
,
J. E.
, 2005, “
Mechanical Properties of Snpb and Lead-Free Solders at High Rates of Strain
,”
J. Phys. D
,
38
(
22
), pp.
4131
4139
.
15.
Nie
,
X.
,
Bhate
,
D.
,
Chan
,
D.
,
Chen
,
W.
,
Subbarayan
,
G.
, and
Dutta
,
I.
, 2008, “
Rate-Dependent Behavior of Sn3.8ago.7cu Solder Over Strain Rates of 10−6 to 10−2 S−1
,”
Proceedings of the 11th Intersociety Conference on Thermal and Ther-momechanical Phenomena in Electronic Systems (ITHERM ’08)
, May 28-31,
Orlando, FL
, pp.
676
682
.
16.
Qin
,
F.
,
Tong
,
A.
, and
Chen
,
N.
, 2010, “
Strain Rate Effects and Rate-Dependent Constitutive Models of Lead-Based and Lead-Free Solders
,”
ASME J. Appl. Mech.
,
77
,
011008
.
17.
Chong
,
D. Y. R.
,
Che
,
F. X.
,
Pang
,
J. H. L.
,
Ng
,
K.
,
Tan
,
J. Y. N.
, and
Low
,
P. T. H.
, 2006, “
Drop Impact Reliability Testing for Lead-Free and Lead-Based Soldered Ic Packages
,”
Microelectron. Reliab.
,
46
(
7
), pp.
1160
1171
.
18.
Fossum
,
A. F.
,
Vianco
,
P. T.
,
Neilsen
,
M. K.
, and
Pierce
,
D. M.
, 2006, “
A Practical Viscoplastic Damage Model for Lead-Free Solder
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
71
81
.
19.
Frear
,
D. R.
,
Burchett
,
S. N.
,
Neilsen
,
M. K.
, and
Stephens
,
J. J.
, 1997, “
Microstructurally Based Finite Element Simulation of Solder Joint Behaviour
,”
Soldering Surf. Mount Technol.
,
25
, pp.
39
42
.
20.
He
,
Y.
,
Chen
,
X.
, and
Bai
,
N.
, 2006, “
Simulation of Sn-0.7cu Solder With Bodner-Partom Constitutive Model
,”
Proceedings of the 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
,
San Diego, CA
, May 30-June 2, IEEE, San Diego, CA, pp.
984
989
.
21.
Knecht
,
S.
, and
Fox
,
L. R.
, 1990, “
Constitutive Relation and Creep-Fatigue Life Model for Eutectic Tin-Lead Solder
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
13
(
2
), pp.
424
433
.
22.
Boyce
,
B. L.
, and
Dilmore
,
M. F.
, 2009, “
The Dynamic Tensile Behavior of Tough, Ultrahigh-Strength Steels at Strain-Rates from 0.0002 s−1 to 200 s−1
,”
Int. J. Impact Eng.
,
36
(
2
), pp.
263
271
.
23.
Bleck
,
W.
, and
Schael
,
I.
, 2000, “
Determination of Crash-Relevant Material Parameters by Dynamic Tensile Tests
,”
Steel Res.
,
71
(
5
), pp.
173
178
.
24.
Regazzoni
,
G.
,
Johnson
,
J. N.
, and
Follansbee
,
P. S.
, 1986, “
Theoretical Study of the Dynamic Tensile Test
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
519
528
.
25.
Shin
,
H. S.
,
Lee
,
H. M.
, and
Kim
,
M. S.
, 2000, “
Impact Tensile Behavior of 9% Nickel Steel at Low Temperature
,”
Int. J. Impact Eng.
,
24
(
6-7
), pp.
571
581
.
26.
Brewer
,
L. N.
, and
Michael
,
J. R.
, 2010, “
Risks of ‘Cleaning’ Electron Backscatter Diffraction Data
,”
Microsc. Today
,
18
(
02
), pp.
10
15
.
27.
Brewer
,
L. N.
,
Field
,
D. P.
, and
Merriman
,
C. C.
,
Electron Backscatter Diffraction in Materials Science
(
Springer
,
New York
, 2009).
28.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
, pp.
541
547
.
29.
Xiaoyan
,
N.
,
Zhigang
,
L.
,
Guozheng
,
Y.
, and
Xuefeng
,
S.
, “
Experimental Studies on the Dynamic Compressive Properties of Lead-Free Solder
,”
Proceedings of the 8th International Conference on Electronic Packaging Technology–ICEPT ‘07
,
Shanghai
,
China
, Aug. 14-17, pp.
365
368
.
30.
More
,
J. J.
, 1978, “
The Levenberg-Marquardt Algorithm: Implementation and Theory
,”
Proceedings of the Biennial Conference on Numerical Analysis
, pp.
105
116
.
31.
Stephens
,
J. J.
, and
Frear
,
D. R.
, 1999, “
Time-Dependent Deformation Behavior of near-Eutectic 60sn-40pb Solder
,”
Metall. Mater. Trans. A
,
30
(
5
), pp.
1301
1313
.
32.
Garofalo
,
F. A.
, 1965,
Fundamentals of Creep and Creep-Rupture in Metals
,
The MacMillan Company
,
New York
.
33.
Ohguchi
,
K. I.
,
Sasaki
,
K.
, and
Ishibashi
,
M.
, 2006, “
A Quantitative Evaluation of Time-Independent and Time-Dependent Deformations of Lead-Free and Lead-Containing Solder Alloys
,”
J. Electron. Mater.
,
35
(
1
), pp.
132
139
.
34.
Anand
,
L.
, 1985, “
Constitutive Equations for Hot-Working of Metals
,”
Int. J. Plast.
,
1
(
3
), pp.
213
231
.
35.
Busso
,
E. P.
,
Kitano
,
M.
, and
Kumazawa
,
T.
, 1992, “
A Visco-Plastic Constitutive Model for 60/40 Tin-Lead Solder Used in Ic Package Joints
,”
ASME J. Eng. Mater. Technol.
,
114
(
3
), pp.
331
337
.
36.
Johnson
,
G. C.
, and
Bammann
,
D. J.
, 1984, “
A Discussion of Stress Rates in Finite Deformation Problems
,”
Int. J. Solids Struct.
,
20
(
8
), pp.
725
737
.
37.
Flanagan
,
D. P.
, and
Taylor
,
L. M.
, 1987, “
An Accurate Numerical Algorithm for Stress Integration With Finite Rotations
,”
Comput. Methods Appl. Mech. Eng.
,
62
(
3
), pp.
305
320
.
38.
Mccabe
,
R. J.
, and
Fine
,
M. E.
, 2002, “
Creep of Tin, Sb-Solution-Strengthened Tin, and Sbsn-Precipitate-Strengthened Tin
,”
Metall. Mater. Trans. A
,
33
(
5
), pp.
1531
1539
.
39.
Long
,
X.
,
Dutta
,
I.
,
Sarihan
,
V.
, and
Frear
,
D. R.
, 2008, “
Deformation Behavior of Sn-3.8ag-0.7cu Solder at Intermediate Strain Rates: Effect of Microstructure and Test Conditions
,”
J. Electron. Mater.
,
37
(
2
), pp.
189
200
.
40.
Nieh
,
T. G.
,
Wadsworth
,
J.
, and
Sherby
,
O. D.
, 1997,
Superplasticity in Metals and Ceramics
,
Cambridge University
,
Cambridge, United Kingdom
.
41.
El-Daly
,
A. A.
, 2004, “
Tensile Properties of Pb-Sn Bearing Alloy Containing Small Amount of Sb
,”
Phys. Status Solidi A
,
201
(
9
), pp.
2035
2041
.
42.
Juhász
,
A.
,
Tasnadi
,
P.
,
Szaszvari
,
P.
, and
Kovacs
,
I.
, 1986, “
Investigation of the Superplasticity of Tin Lead Eutectic by Impression Creep Tests
,”
J. Mater. Sci.
,
21
(
9
), pp.
3287
3291
.
43.
Zelin
,
M. G.
,
Dunlap
,
M. R.
,
Rosen
,
R.
, and
Mukherjee
,
A. K.
, 1993, “
The Direct Observation of Cooperative Grain-Boundary Sliding and Migration During Superplastic Deformation of Lead-Tin Eutectic in Shear
,”
J. Appl. Phys.
,
74
(
8
), pp.
4972
4982
.
44.
Ding
,
Y.
,
Wang
,
C. Q.
,
Li
,
M. Y.
, and
Bang
,
H. S.
, 2005, “
Evolution of Deformation Near the Triple Point of Grain Junctions in Sn-Based Solders During in Situ Tensile Test
,”
Mater. Lett.
,
59
(
6
), pp.
697
700
.
45.
Telang
,
A. U.
, and
Bieler
,
T. R.
, 2005, “
The Orientation Imaging Microscopy of Lead-Free Sn-Ag Solder Joints
,”
JOM
,
57
(
6
), pp.
44
49
.
46.
Telang
,
A. U.
,
Bieler
,
T. R.
, and
Crimp
,
M. A.
, 2006, “
Grain Boundary Sliding on Near-7 Degrees, 14 Degrees, and 22 Degrees Special Boundaries During Thermornechanical Cycling in Surface-Mount Lead-Free Solder Joint Specimens
,”
Mater. Sci. Eng., A
,
421
(
1-2
), pp.
22
34
.
47.
Kumar
,
P.
,
Dutta
,
I.
,
Sarihan
,
V.
,
Frear
,
D. R.
, and
Renavikar
,
M.
, 2008,
11th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Vols.
1
3
.
You do not currently have access to this content.