The significant difference between failure modes of lead-containing and lead-free solder joints under drop impact loading remains to be not well understood. In this paper, we propose a feasible finite element approach to model the cracking behavior of solder joints under drop impact loading. In the approach, the intermetallic compound layer/solder bulk interface is modeled by the cohesive zone model, and the crack driving force in the intermetallic compound layer is evaluated by computing the energy release rate. The numerical simulation of a board level package under drop impact loading shows that, for the lead-containing Sn37Pb solder joint, the damage in the vicinity of the intermetallic compound layer initiates earlier and is much greater than that in the lead-free Sn3.5Ag solder joint. This damage relieves the stress in the intermetallic compound layer and reduces the crack driving force in it and consequently alleviates the risk of the intermetallic compound layer fracturing.

References

References
1.
Liu
,
W.
, and
Lee
,
N.-C.
, 2007, “
The Effects of Additives to SnAgCu Alloys on Microstructure and Drop Impact Reliability of Solder Joints
”,
JOM
,
59
(
7
), pp.
26
31
.
2.
Date
,
M.
,
Shoji
,
T.
,
Fujiyoshi
,
M.
,
Sato
,
K.
, and
Tu
,
K. N.
, 2004, “
Impact Reliability of Solder Joints
”,
IEEE Proceedings of the 54th Electronic Components and Technology Conference
, pp.
668
674
.
3.
Zhang
,
N.
,
Shi
,
Y.
,
Xia
,
Z.
,
Lei
,
Y.
,
Guo
,
F.
, and
Li
,
X.
, 2008, “
A Comparison of Impact Toughness and Fracture Morphologies Between Pb-Containing and Pb-Free Solder Joints Subject to the Charpy Impact Test
”,
J. Electron. Mater.
,
37
(
10
), pp.
1631
1639
.
4.
Tsukamoto
,
H.
,
Nishimura
,
T.
,
Suenaga
,
S.
,
McDonald
,
S. D.
,
Sweatman
,
K. W.
, and
Nogita
,
K.
, 2011, “
The Influence of Solder Composition on the Impact Strength of Lead-Free Solder Ball Grid Array Joints
”,
Microelectron. Reliab
,
51
(
3
), pp.
657
667
.
5.
Qin
,
F.
,
An
,
T.
,
Chen
,
N.
, and
Bai
,
J.
, 2009, “
Tensile Behaviors of Lead-Containing and Lead-Free Solders at High Strain Rates
”,
ASME J. Electron. Packag.
,
131
(
3
), pp.
0310011
0310016
.
6.
Solomon
,
H. D.
, 1986, “
Fatigue of 60/40 Solder
”,
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
CHMT-9
(
4
), pp.
423
432
.
7.
Nir
,
N.
,
Dudderar
,
T. D.
,
Wong
,
C. C.
, and
Storm
,
A. R.
, 1991, “
Fatigue Properties of Microelectronic Solder Joints
”,
ASME J. Electron. Packag.
,
113
(
2
), pp.
92
101
.
8.
Pao
,
Y. H.
, 1992, “
A Fracture Mechanics Approach to Thermal Fatigue Life Prediction of Solder Joints
”,
IEEE Trans. Compon. Hybrids Manuf. Technol.
,
15
(
4
), pp.
559
570
.
9.
Lee
,
S. B.
, and
Kim
,
J. K.
, 1997, “
A Mechanistic Model for Fatigue Life Prediction of Solder Joints for Electronic Packages
”,
Int. J. Fatigue
,
19
(
1
), pp.
85
91
.
10.
Ju
,
S. H.
,
Sandor
,
B. I.
, and
Plesha
,
M. E.
, 1996, “
Life Prediction of Solder Joints by Damage and Fracture Mechanics
”,
ASME J. Electron. Packag.
,
118
, pp.
193
200
.
11.
Fang
,
H. E.
,
Chow
,
C. L.
, and
Yang
,
F.
, 1998, “
A Method of Damage Mechanics Analysis for Solder Material
”,
Key Eng. Mater.
,
145–149
, pp.
367
374
.
12.
Basaran
,
C.
, and
Yan
,
C. Y.
, 1998, “
A Thermodynamic Framework for Damage Mechanics of Solder Joints
”,
ASME J. Electron. Packag.
,
120
, pp.
379
384
.
13.
Wei
,
Y.
,
Chao
,
C. L.
,
Fang
,
H. E.
, and
Neilsen
,
M. K.
, 2001, “
Characteristics of Creep Damage for 60Sn–40Pb Solder Materials
”,
ASME J. Electron. Packag.
,
123
, pp.
278
283
.
14.
Zhang
,
X.
,
Lee
,
S. W. R.
, and
Pao
,
Y. H.
, 2001, “
A Damage Evolution Model for Thermal Fatigue Analysis of Solder Joints
”,
ASME J. Electron. Packag.
,
122
, pp.
200
206
.
15.
Yang
,
Q. D.
,
Shim
,
D. J.
, and
Spearing
,
S. M.
, 2004, “
A Cohesive Zone Model for Low Cycle Fatigue Life Prediction of Solder Joints
”,
Microelectron. Eng.
,
75
, pp.
85
95
.
16.
Towashiraporn
,
P.
,
Subbarayan
,
G.
, and
Desai
,
C. S.
, 2005, “
A Hybrid Model for Computationally Efficient Fatigue Fracture Simulations at Microelectronic Assembly Interfaces
”,
Int. J. Solids Struct.
,
42
, pp.
4468
4483
.
17.
Abdul-Baqi
,
A.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
, 2005, “
Fatigue Damage Modeling in Solder Interconnects Using a Cohesive Zone Approach
”,
Int. J. Solids Struct.
,
42
(
3–4
), pp.
927
942
.
18.
Bhate
,
D.
,
Chan
,
D.
,
Subbarayan
,
G.
,
Nguyen
,
L.
,
Zhao
,
J.
, and
Edwards
,
D.
, 2010, “
Singularities at Solder Joint Interfaces and Their Effects on Fracture Models
”,
ASME J. Electron. Packag.
,
132
, pp.
0210071
02100710
.
19.
Hayes
,
S. M.
,
Chawla
,
N.
, and
Frear
,
D. R.
, 2009, “
Interfacial Fracture Toughness of Pb-Free Solders
”,
Microelectron. Reliab.
,
49
, pp.
269
287
.
20.
Lai
,
Y. S.
,
Yang
,
P. F.
, and
Yeh
,
C. L.
, 2006, “
Experimental Studies of Board-Level Reliability of Chip-Scale Packages Subjected to JEDEC Drop Test Condition
”,
Microelectron. Reliab.
,
46
, pp.
645
650
.
21.
Barenblatt
,
G. I.
, 1962, “
Mathematical Theory of Equilibrium Cracks
”,
Adv. Appl. Mech.
,
7
, pp.
56
129
.
22.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
”,
J. Mech. Phys. Solids
,
8
, pp.
100
104
.
23.
Needleman
,
A.
, 1987, “
A Continuum Model for Void Nucleation by Inclusion Debonding
”,
ASME J. Appl. Mech.
,
54
, pp.
525
531
.
24.
Xu
,
X. P.
, and
Needleman
,
A.
, 1994, “
Numerical Simulations of Fast Crack Growth in Brittle Solids
”,
J. Mech. Phys. Solids
,
42
(
9
), pp.
1397
1434
.
25.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
, 1992, “
The Relation Between Crack Growth Resistance and Fracture Process Parameters in Elastic-Plastic Solids
”,
J. Mech. Phys. Solids
,
40
, pp.
1377
1397
.
26.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
, 1996, “
Effect of Strain-Dependent Cohesive Model on Predictions of Crack Growth Resistance
”,
Int. J. Solids Struct.
,
33
, pp.
3297
3308
.
27.
Camanho
,
P. P.
, and
Dávila
,
C. G.
, 2002, “
Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials
”, NASA/TM-2002–211737, pp.
1
37
.
28.
ABAQUS Analysis User’s Manual, Version 6.7, Dassault Systèmes.
29.
JEDEC Solid State Technology Association, 2004, “
Mechanical Shock
”, JESD22-B104C, Arlington, VA.
30.
Qin
,
F.
,
An
,
T.
, and
Chen
,
N.
, 2010, “
Strain Rate Effects and Rate-Dependent Constitutive Models of Lead-Based and Lead-Free Solders
”,
ASME J. Appl. Mech.
,
77
, pp.
0110081
01100811
.
31.
Ghosh
,
G.
, 2004, “
Elastic Properties, Hardness, and Indentation Fracture Toughness of Intermetallics Relevant to Electronic Packaging
”,
J. Mater. Res.
,
19
(
5
), pp.
1439
1454
.
32.
Frear
,
D. R.
, and
Vianco
,
P. T.
, 1994, “
Intermetallic Growth and Mechanical Behavior of Low and High Melting Temperature Solder Alloys
”,
Metall. Mater. Trans. A
,
25A
, pp.
1509
1523
.
You do not currently have access to this content.