This paper is directed at the numerical simulation of pressure-driven nitrogen slip flow in long microchannels, focusing on conjugate heat transfer under uniform heat flux wall boundary condition. This problem has not been studied in detail despite its importance in many practical circumstances such as those related to the cooling of electronic devices and localized heat input in materials processing systems. For the gas phase, the two-dimensional momentum and energy equations are solved, considering variable properties, rarefaction, which involves velocity slip, thermal creep and temperature jump, compressibility, and viscous dissipation. For the solid, the energy equation is solved with variable properties. Four different substrate materials are studied, including commercial bronze, silicon nitride, pyroceram, and fused silica. The effects of substrate axial conduction, material thermal conductivity and substrate thickness are investigated in detail. It is found that substrate axial conduction leads to a flatter bulk temperature profile along the channel, lower maximum temperature, and lower Nusselt number. The effect of substrate thickness on the conjugate heat transfer is very similar to that of the substrate thermal conductivity. That is, in terms of axial thermal resistance, the increase in substrate thickness has the same impact as that caused by an increase in its thermal conductivity. By comparing the results from constant and variable property models, it is found that the effects of variation in substrate material properties are negligible.

References

1.
Gad-el-Hak
,
M.
, 1999, “
The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture
,”
J. Fluids Eng.
,
121
, pp.
5
33
.
2.
Sun
,
Z.
, and
Jaluria
,
Y.
, 2009, “
Numerical Modeling of Pressure-Driven Nitrogen Slip Flow in Long Rectangular Microchannels
,”
Numer. Heat Transfer A
,
56
, pp.
541
562
.
3.
Sun
,
Z.
, and
Jaluria
,
Y.
, 2010, “
Unsteady Two-Dimensional Nitrogen Flow in Long Microchannels With Uniform Wall Heat Flux
,”
Numer. Heat Transfer A
,
57
, pp.
625
641
.
4.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
, 1991, “
Fluid Flow and Heat Transfer in Microtubes
,”
ASME DSC Micromech. Sens.
,
19
, pp.
149
157
.
5.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1991, “
Gas and Liquid Flow in Small Channels
,”
ASME DSC Micromech. Sens.
,
32
, pp.
49
60
.
6.
Pong
,
K.-C.
,
Ho
,
C.-M.
,
Liu
,
J.
, and
Tai
,
Y.-C.
, 1994, “
Non-Linear Pressure Distribution in Uniform Microchannels
,”
ASME FED, Appl. Microfabr. Fluid Mech.
,
196
, pp.
51
56
.
7.
Harley
,
J. C.
,
Huang
,
Y. H.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1995, “
Gas Flow in Microchannels
,”
J. Fluid Mech.
,
284
, pp.
257
274
.
8.
Yu
,
D.
,
Warrington
,
R.
,
Barron
,
R.
, and
Ameel
,
T.
, 1995, “
An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes
,”
ASME/JSME Thermal Engineering Conference
,
1
, pp.
523
530
.
9.
Sparrow
,
E. M.
, and
Lin
,
S. H.
, 1962, “
Laminar Heat Transfer in Tubes Under Slip-Flow Conditions
,”
J. Heat Transfer
,
84
, pp.
363
369
.
10.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
, 1997, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
,
6
, pp.
167
178
.
11.
Yu
,
S.
, and
Ameel
,
T. A.
, 2001, “
Slip-Flow Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
44
, pp.
4225
4234
.
12.
Yu
,
S.
, and
Ameel
,
T. A.
, 2001, “
Slip Flow Convection in Isoflux Rectangular Microchannels
,”
J. Heat Transfer
,
124
, pp.
346
355
.
13.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
, 2002, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
45
, pp.
765
773
.
14.
Chen
,
C.
, 2006, “
Slip-Flow Heat Transfer in a Microchannel With Viscous Dissipation
,”
Heat Mass Transfer
,
42
, pp.
853
860
.
15.
Jeong
,
H.
, and
Jeong
,
J.
, 2006, “
Extended Graetz Problem Including Streamwise Conduction and Viscous Dissipation in Microchannel
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2151
2157
.
16.
Beskok
,
A.
,
Karniadakis
,
G. E.
, and
Trimmer
,
W.
, 1996, “
Rarefaction and Compressibility Effects in Gas Microflows
,”
J. Fluids Eng.
,
118
, pp.
448
456
.
17.
Guo
,
Z. Y.
, and
Wu
,
X. B.
, 1997, “
Compressibility Effect on the Gas Flow and Heat Transfer in a Microtube
,”
Int. J. Heat Mass Transfer
,
40
, pp.
3251
3254
.
18.
Chen
,
C. S.
,
Lee
,
S. M.
, and
Sheu
,
J. D.
, 1998, “
Numerical Analysis of Gas Flow in Microchannels
,”
Numer. Heat Transfer A
,
33
, pp.
749
762
.
19.
Roy
,
S.
,
Raju
,
R.
,
Chuang
,
H. F.
,
Cruden
,
B. A.
, and
Meyyappan
,
M.
, 2003, “
Modeling Gas Flow Through Microchannels and Nanopores
,”
J. Appl. Phys.
,
93
, pp.
4870
4879
.
20.
Raju
,
R.
, and
Roy
,
S.
, 2005, “
Hydrodynamic Study of High-Speed Flow and Heat Transfer Through a Microchannel
,”
J. Thermophys. Heat Transfer
,
19
, pp.
106
113
.
21.
Ng
,
E. Y. K.
,
Tso
,
C. P.
,
Wen
,
Z. M.
, and
Choo
,
K. F.
, 1999, “
Numerical Simulation of Flow and Conjugate Heat Transfer in a Microchannel for Electronics Cooling
,”
J. Electron. Manuf.
,
9
, pp.
141
153
.
22.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
, pp.
399
415
.
23.
Ng
,
E. Y. K.
, and
Poh
,
S. T.
, 2001, “
CFD Analysis of Double-Layer Microchannel Conjugate Parallel Liquid Flows with Electronic Double-Layer Effects
,”
Numer. Heat Transfer A
,
40
, pp.
735
749
.
24.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
, 2004, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3993
4004
.
25.
Sharath
,
P.
,
Rao
,
C.
,
Rahman
,
M. M.
, and
Soliman
,
H. M.
, 2006, “
Numerical Simulation of Steady-State Conjugate Heat Transfer in a Circular Microtube Inside a Rectangular Substrate
,”
Numer. Heat Transfer A
,
49
, pp.
635
654
.
26.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
, 1994, “
Gaseous Flow in Microchannels
,”
ASME FED Appl. Microfabr. Fluid Mech.
,
197
, pp.
57
66
.
27.
Fotiadis
,
D. I.
,
Boekholt
,
M.
,
Jensen
,
K. F.
, and
Richter
,
W.
, 1990, “
Flow and Heat Transfer in CVD Reactors: Comparison of Raman Temperature Measurements and Finite Element Model Predictions
,”
J. Crystal Growth
,
100
, pp.
577
599
.
28.
Sun
,
Z.
, 2009, “
Numerical Study of Pressure-Driven Nitrogen Flow in Long Microchannels for Application to Electronic Cooling
,” Ph.D. dissertation, Rutgers University, New Brunswick, NJ.
You do not currently have access to this content.